forked from Zhikaiiii/traffic-prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGCN.py
38 lines (35 loc) · 1.22 KB
/
GCN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
class Graph_convolution(nn.Module):
def __init__(self, input_dim, output_dim, bias=False, activation='relu'):
super(Graph_convolution, self).__init__()
self.bias = None
# 权重矩阵
self.weight = nn.Parameter(torch.randn(input_dim, output_dim))
if bias:
self.bias = nn.Parameter(torch.zeros(output_dim))
# 激活函数
if activation == 'relu':
self.act = nn.ReLU()
else:
self.act = nn.Sigmoid()
def forward(self, x, adj):
out = torch.mm(adj, x)
out = torch.mm(out, self.weight)
if self.bias:
out += self.bias
return self.act(out)
class GCN(nn.module):
def __init__(self, input_dim, output_dim,adj):
super(GCN,self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.adj = adj
self.layer1 = Graph_convolution(self.input_dim, 100)
self.layer2 = Graph_convolution(100, self.output_dim, activation='sigmoid')
def forward(self, x):
out = self.layer1(x, self.adj)
out = self.layer2(out, self.adj)
return out