-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrelax.py
151 lines (129 loc) · 4.44 KB
/
relax.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import numpy as np
from scipy.sparse import diags
import matplotlib.pyplot as plt
#=================================================================================
# Function for the solution of boundary value problem via relaxation
#=================================================================================
def relax(f, y0, y1, x, init, args=(), tol=1e-8, max_iter=100, dense_output=False):
'''
Implementation of relaxation method for ODE 2pt-BVP.
The equation must be in the form: y''(x) = f(x, y, y')
Parameters
----------
f : callable
A vector function of differential equation like: y'' = f
y0, y1 : float
required value of solution at boundary
x : 1darray
array of position, or time, independent variable
init : 1darray
Initial guess.
args : tuple, optional
Extra arguments passed to f
tol :float, optional, default 1e-8
required tollerance
max_iter : int, optional, default 100
after max_it iteration the code stop raising an exception
dense_output : bool, optional, default False
true for full and number of iteration
Return
------
yo : 1darray
solution of differential equation
if dense_outupt=True all iteration are returned
in a matrix called Y and also the number of iteration
'''
# parameter of discretizzation
N = len(x)
h = np.diff(x)[0]
# second derivative matrix
d2 = diags([1, -2, 1], [-1, 0, 1], shape=(N, N)).toarray()
d2 = d2/h**2
# bound values required
yb = [y0/h**2] + [0]*int(N-2) + [y1/h**2]
yb = np.array(yb)
# init guess from imput
yo = init
# interation count
it = 0
#for full output
Y = []
if dense_output : Y.append(yo)
while True:
# for jacobian computation
df = np.zeros(d2.shape)
s = np.zeros(N)
for i in range(N):
s[i] = 1
yr, yl = yo + h*s, yo - h*s
df[i, :] = (f(x, yr, h, *args) - f(x, yl, h, *args) )/(2*h)
s[:] = 0
yn = yo - np.linalg.solve(d2-df, d2@yo - f(x, yo, h, g, o02) + yb)
# residual
R = np.sqrt(np.sum((yn-yo)**2))
if R < tol:
yo = yn
break
if it > max_iter:
raise Exception("to many iteration")
#update
yo = yn
it = it + 1
if dense_output : Y.append(yo)
if dense_output:
return Y, it
else:
return yo
#=================================================================================
# RHS of differential equations y'' = f
#=================================================================================
def f(t, y, h, g, o02):
'''
RHS of differential equations y'' = f
f can be a function non only of y but also y' so
we use a second order approximation to compute y'
Parameter
---------
t : 1darray
independent variable
y : 1darray
solution or guess of solution
h : float
step's size for derivative computation
g, o02 : float
parameter of our differential equation
Return
------
y_ddot : float
RHS of equation computed on a grid
'''
y_dot = (y[2:] - y[:-2])/(2*h) # second order derivative
y_dot_0 = (- 3*y[0] + 4*y[1] - y[2] )/(2*h) # second order derivative on left bound
y_dot_n = ( 3*y[-1] - 4*y[-2] + y[-3])/(2*h) # second order derivative on right bound
# join everything together to get the second order derivative
y_dot = np.insert(y_dot, 0, y_dot_0)
y_dot = np.insert(y_dot, len(y_dot), y_dot_n)
# equation to solve
y_ddot = -g*y_dot - o02*y
return y_ddot
#=================================================================================
# Main code and plot
#=================================================================================
g = 0.3 # damping factor
o02 = 1 # proper frequency squared
xi = 0 # left end of the interval
xf = 5 # right end of the interval
N = 1000 # number of points
y0 = 1 # boundary condition on xi
y1 = 0.1862 # boundary condition on xf
x = np.linspace(xi, xf, N)
y = (x - xi) * (y1 - y0)/(xf - xi) + y0 # linear guess
Y, n = relax(f, y0, y1, x, y,args=(g, o02), dense_output=True)
print(f"{n} iterations required")
for y in Y:
plt.plot(x, y)
plt.title("Solution via relaxation method", fontsize=15)
plt.xlabel("x", fontsize=15)
plt.ylabel("y", fontsize=15)
plt.grid()
plt.show()