-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathba_interp3.cpp
721 lines (621 loc) · 30.7 KB
/
ba_interp3.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
// Fast nearest, bi-linear and bi-cubic interpolation for 3d image data on a regular grid.
//
// Usage:
// ------
// R = ba_interp3(F, X, Y, Z, [method])
// R = ba_interp3(Fx, Fy, Fz, F, X, Y, Z, [method])
//
// where method is one off nearest, linear, or cubic.
//
// Fx, Fy, Fz
// are the coordinate system in which F is given. Only the first and
// last entry in Fx, Fy, Fz are used, and it is assumed that the
// inbetween values are linearly interpolated.
// F is a WxHxDxC Image with an arbitray number of channels C.
// X, Y, Z are I_1 x ... x I_n matrices with the x and y coordinates to
// interpolate.
// R is a I_1 x ... x I_n x C matrix, which contains the interpolated image channels.
//
// Notes:
// ------
// This method handles the border by repeating the closest values to the point accessed.
// This is different from matlabs border handling.
//
// Example
// ------
//
// %% Interpolation of 3D volumes (e.g. distance transforms)
// clear
// sz=5;
//
// % Dist
// dist1.D = randn(sz,sz,sz);
// [dist1.x dist1.y dist.z] = meshgrid(linspace(-1,1,sz), linspace(-1,1,sz), linspace(-1,1,sz));
//
// R = [cos(pi/4) sin(pi/4); -sin(pi/4) cos(pi/4)];
// RD = R * [Dx(:)'; Dy(:)'] + 250;
// RDx = reshape(RD(1,:), size(Dx));
// RDy = reshape(RD(2,:), size(Dy));
//
// methods = {'nearest', 'linear', 'cubic'};
// la=nan(1,3);
// for i=1:3
// la(i) = subplot(2,2,i);
// tic;
// IMG_R = ba_interp2(IMG, RDx, RDy, methods{i});
// elapsed=toc;
// imshow(IMG_R);
// title(sprintf('Rotation and zoom using %s interpolation took %gs', methods{i}, elapsed));
// end
// linkaxes(la);
//
// Licence:
// --------
// GPL
// (c) 2008 Brian Amberg
// http://www.brian-amberg.de/
#include <mex.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <iostream>
inline
static
int access(int M, int N, int O, int x, int y, int z) {
if (x<0) x=0; else if (x>=N) x=N-1;
if (y<0) y=0; else if (y>=M) y=M-1;
if (z<0) z=0; else if (z>=O) z=O-1;
return y + M*(x + N*z);
}
inline
static
int access_unchecked(int M, int N, int O, int x, int y, int z) {
return y + M*(x + N*z);
}
inline
static
void indices_linear(
int &f000_i,
int &f100_i,
int &f010_i,
int &f110_i,
int &f001_i,
int &f101_i,
int &f011_i,
int &f111_i,
const int x, const int y, const int z,
const mwSize &M, const mwSize &N, const mwSize &O) {
if (x<=1 || y<=1 || z<=1 || x>=N-2 || y>=M-2 || z>=O-2) {
f000_i = access(M,N,O, x, y , z);
f100_i = access(M,N,O, x+1, y , z);
f010_i = access(M,N,O, x, y+1, z);
f110_i = access(M,N,O, x+1, y+1, z);
f001_i = access(M,N,O, x, y , z+1);
f101_i = access(M,N,O, x+1, y , z+1);
f011_i = access(M,N,O, x, y+1, z+1);
f111_i = access(M,N,O, x+1, y+1, z+1);
} else {
f000_i = access_unchecked(M,N,O, x, y , z);
f100_i = access_unchecked(M,N,O, x+1, y , z);
f010_i = access_unchecked(M,N,O, x, y+1, z);
f110_i = access_unchecked(M,N,O, x+1, y+1, z);
f001_i = access_unchecked(M,N,O, x, y , z+1);
f101_i = access_unchecked(M,N,O, x+1, y , z+1);
f011_i = access_unchecked(M,N,O, x, y+1, z+1);
f111_i = access_unchecked(M,N,O, x+1, y+1, z+1);
}
}
inline
static
void indices_cubic(
int f_i[64],
const int x, const int y, const int z,
const mwSize &M, const mwSize &N, const mwSize &O) {
if (x<=2 || y<=2 || z<=2 || x>=N-3 || y>=M-3 || z>=O-3) {
for (int i=0; i<4; ++i)
for (int j=0; j<4; ++j)
for (int k=0; k<4; ++k)
f_i[i+4*(j+4*k)] = access(M,N,O, x+i-1, y+j-1, z+k-1);
} else {
for (int i=0; i<4; ++i)
for (int j=0; j<4; ++j)
for (int k=0; k<4; ++k)
f_i[i+4*(j+4*k)] = access_unchecked(M,N,O, x+i-1, y+j-1, z+k-1);
}
}
static
void interpolate_nearest(double *pO, const double *pF,
const double *pX, const double *pY, const double *pZ,
const mwSize ND, const mwSize M, const mwSize N, const mwSize O, const mwSize P,
const double s_x, const double o_x,
const double s_y, const double o_y,
const double s_z, const double o_z) {
const mwSize LO = M*N*O;
for (mwSize i=0; i<ND; ++i) {
const double &x = pX[i];
const double &y = pY[i];
const double &z = pZ[i];
const int x_round = int(round(s_x*x+o_x))-1;
const int y_round = int(round(s_y*y+o_y))-1;
const int z_round = int(round(s_z*z+o_z))-1;
const int f00_i = access(M,N,O, x_round,y_round,z_round);
for (mwSize j=0; j<P; ++j) {
pO[i + j*ND] = pF[f00_i + j*LO];
}
}
}
template <mwSize P>
static
void interpolate_nearest_unrolled(double *pO, const double *pF,
const double *pX, const double *pY, const double *pZ,
const mwSize ND, const mwSize M, const mwSize N, const mwSize O,
const double s_x, const double o_x,
const double s_y, const double o_y,
const double s_z, const double o_z) {
const mwSize LO = M*N*O;
for (mwSize i=0; i<ND; ++i) {
const double &x = pX[i];
const double &y = pY[i];
const double &z = pZ[i];
const int x_round = int(round(s_x*x+o_x))-1;
const int y_round = int(round(s_y*y+o_y))-1;
const int z_round = int(round(s_z*z+o_z))-1;
const int f00_i = access(M,N,O, x_round,y_round,z_round);
for (mwSize j=0; j<P; ++j) {
pO[i + j*ND] = pF[f00_i + j*LO];
}
}
}
static
void interpolate_linear(double *pO, const double *pF,
const double *pX, const double *pY, const double *pZ,
const mwSize ND, const mwSize M, const mwSize N, const mwSize O, const mwSize P,
const double s_x, const double o_x,
const double s_y, const double o_y,
const double s_z, const double o_z) {
const mwSize LO = M*N*O;
for (mwSize i=0; i<ND; ++i) {
const double &x_ = pX[i];
const double &y_ = pY[i];
const double &z_ = pZ[i];
const double x = s_x*x_+o_x;
const double y = s_y*y_+o_y;
const double z = s_z*z_+o_z;
const double x_floor = floor(x);
const double y_floor = floor(y);
const double z_floor = floor(z);
const double dx = x-x_floor;
const double dy = y-y_floor;
const double dz = z-z_floor;
const double wx0 = 1.0-dx;
const double wx1 = dx;
const double wy0 = 1.0-dy;
const double wy1 = dy;
const double wz0 = 1.0-dz;
const double wz1 = dz;
int f000_i, f100_i, f010_i, f110_i;
int f001_i, f101_i, f011_i, f111_i;
// TODO: Use openmp
indices_linear(
f000_i, f100_i, f010_i, f110_i,
f001_i, f101_i, f011_i, f111_i,
int(x_floor-1), int(y_floor-1), int(z_floor-1), M, N, O);
for (mwSize j=0; j<P; ++j) {
pO[i + j*ND] =
wz0*(
wy0*(wx0 * pF[f000_i + j*LO] + wx1 * pF[f100_i + j*LO]) +
wy1*(wx0 * pF[f010_i + j*LO] + wx1 * pF[f110_i + j*LO])
)+
wz1*(
wy0*(wx0 * pF[f001_i + j*LO] + wx1 * pF[f101_i + j*LO]) +
wy1*(wx0 * pF[f011_i + j*LO] + wx1 * pF[f111_i + j*LO])
);
}
}
}
template <mwSize P>
static
void interpolate_linear_unrolled(double *pO, const double *pF,
const double *pX, const double *pY, const double *pZ,
const mwSize ND, const mwSize M, const mwSize N, const mwSize O,
const double s_x, const double o_x,
const double s_y, const double o_y,
const double s_z, const double o_z) {
const mwSize LO = M*N*O;
for (mwSize i=0; i<ND; ++i) {
const double &x_ = pX[i];
const double &y_ = pY[i];
const double &z_ = pZ[i];
const double x = s_x*x_+o_x;
const double y = s_y*y_+o_y;
const double z = s_z*z_+o_z;
const double x_floor = floor(x);
const double y_floor = floor(y);
const double z_floor = floor(z);
const double dx = x-x_floor;
const double dy = y-y_floor;
const double dz = z-z_floor;
const double wx0 = 1.0-dx;
const double wx1 = dx;
const double wy0 = 1.0-dy;
const double wy1 = dy;
const double wz0 = 1.0-dz;
const double wz1 = dz;
int f000_i, f100_i, f010_i, f110_i;
int f001_i, f101_i, f011_i, f111_i;
// TODO: Use openmp
indices_linear(
f000_i, f100_i, f010_i, f110_i,
f001_i, f101_i, f011_i, f111_i,
int(x_floor-1), int(y_floor-1), int(z_floor-1), M, N, O);
for (mwSize j=0; j<P; ++j) {
pO[i + j*ND] =
wz0*(
wy0*(wx0 * pF[f000_i + j*LO] + wx1 * pF[f100_i + j*LO]) +
wy1*(wx0 * pF[f010_i + j*LO] + wx1 * pF[f110_i + j*LO])
)+
wz1*(
wy0*(wx0 * pF[f001_i + j*LO] + wx1 * pF[f101_i + j*LO]) +
wy1*(wx0 * pF[f011_i + j*LO] + wx1 * pF[f111_i + j*LO])
);
}
}
}
static
void interpolate_bicubic(double *pO, const double *pF,
const double *pX, const double *pY, const double *pZ,
const mwSize ND, const mwSize M, const mwSize N, const mwSize O, const mwSize P,
const double s_x, const double o_x,
const double s_y, const double o_y,
const double s_z, const double o_z) {
const mwSize LO = M*N*O;
for (mwSize i=0; i<ND; ++i) {
const double &x_ = pX[i];
const double &y_ = pY[i];
const double &z_ = pZ[i];
const double x = s_x*x_+o_x;
const double y = s_y*y_+o_y;
const double z = s_z*z_+o_z;
const double x_floor = floor(x);
const double y_floor = floor(y);
const double z_floor = floor(z);
const double dx = x-x_floor;
const double dy = y-y_floor;
const double dz = z-z_floor;
const double dxx = dx*dx;
const double dxxx = dxx*dx;
const double dyy = dy*dy;
const double dyyy = dyy*dy;
const double dzz = dz*dz;
const double dzzz = dzz*dz;
const double wx0 = 0.5 * ( - dx + 2.0*dxx - dxxx);
const double wx1 = 0.5 * (2.0 - 5.0*dxx + 3.0 * dxxx);
const double wx2 = 0.5 * ( dx + 4.0*dxx - 3.0 * dxxx);
const double wx3 = 0.5 * ( - dxx + dxxx);
const double wy0 = 0.5 * ( - dy + 2.0*dyy - dyyy);
const double wy1 = 0.5 * (2.0 - 5.0*dyy + 3.0 * dyyy);
const double wy2 = 0.5 * ( dy + 4.0*dyy - 3.0 * dyyy);
const double wy3 = 0.5 * ( - dyy + dyyy);
const double wz0 = 0.5 * ( - dz + 2.0*dzz - dzzz);
const double wz1 = 0.5 * (2.0 - 5.0*dzz + 3.0 * dzzz);
const double wz2 = 0.5 * ( dz + 4.0*dzz - 3.0 * dzzz);
const double wz3 = 0.5 * ( - dzz + dzzz);
int f_i[64];
indices_cubic(
f_i,
int(x_floor-1), int(y_floor-1), int(z_floor-1), M, N, O);
for (mwSize j=0; j<P; ++j) {
pO[i + j*ND] =
wz0*(
wy0*(wx0 * pF[f_i[0+4*(0+4*0)] + j*LO] + wx1 * pF[f_i[1+4*(0+4*0)] + j*LO] + wx2 * pF[f_i[2+4*(0+4*0)] + j*LO] + wx3 * pF[f_i[3+4*(0+4*0)] + j*LO]) +
wy1*(wx0 * pF[f_i[0+4*(1+4*0)] + j*LO] + wx1 * pF[f_i[1+4*(1+4*0)] + j*LO] + wx2 * pF[f_i[2+4*(1+4*0)] + j*LO] + wx3 * pF[f_i[3+4*(1+4*0)] + j*LO]) +
wy2*(wx0 * pF[f_i[0+4*(2+4*0)] + j*LO] + wx1 * pF[f_i[1+4*(2+4*0)] + j*LO] + wx2 * pF[f_i[2+4*(2+4*0)] + j*LO] + wx3 * pF[f_i[3+4*(2+4*0)] + j*LO]) +
wy3*(wx0 * pF[f_i[0+4*(3+4*0)] + j*LO] + wx1 * pF[f_i[1+4*(3+4*0)] + j*LO] + wx2 * pF[f_i[2+4*(3+4*0)] + j*LO] + wx3 * pF[f_i[3+4*(3+4*0)] + j*LO])
) +
wz1*(
wy0*(wx0 * pF[f_i[0+4*(0+4*1)] + j*LO] + wx1 * pF[f_i[1+4*(0+4*1)] + j*LO] + wx2 * pF[f_i[2+4*(0+4*1)] + j*LO] + wx3 * pF[f_i[3+4*(0+4*1)] + j*LO]) +
wy1*(wx0 * pF[f_i[0+4*(1+4*1)] + j*LO] + wx1 * pF[f_i[1+4*(1+4*1)] + j*LO] + wx2 * pF[f_i[2+4*(1+4*1)] + j*LO] + wx3 * pF[f_i[3+4*(1+4*1)] + j*LO]) +
wy2*(wx0 * pF[f_i[0+4*(2+4*1)] + j*LO] + wx1 * pF[f_i[1+4*(2+4*1)] + j*LO] + wx2 * pF[f_i[2+4*(2+4*1)] + j*LO] + wx3 * pF[f_i[3+4*(2+4*1)] + j*LO]) +
wy3*(wx0 * pF[f_i[0+4*(3+4*1)] + j*LO] + wx1 * pF[f_i[1+4*(3+4*1)] + j*LO] + wx2 * pF[f_i[2+4*(3+4*1)] + j*LO] + wx3 * pF[f_i[3+4*(3+4*1)] + j*LO])
) +
wz2*(
wy0*(wx0 * pF[f_i[0+4*(0+4*2)] + j*LO] + wx1 * pF[f_i[1+4*(0+4*2)] + j*LO] + wx2 * pF[f_i[2+4*(0+4*2)] + j*LO] + wx3 * pF[f_i[3+4*(0+4*2)] + j*LO]) +
wy1*(wx0 * pF[f_i[0+4*(1+4*2)] + j*LO] + wx1 * pF[f_i[1+4*(1+4*2)] + j*LO] + wx2 * pF[f_i[2+4*(1+4*2)] + j*LO] + wx3 * pF[f_i[3+4*(1+4*2)] + j*LO]) +
wy2*(wx0 * pF[f_i[0+4*(2+4*2)] + j*LO] + wx1 * pF[f_i[1+4*(2+4*2)] + j*LO] + wx2 * pF[f_i[2+4*(2+4*2)] + j*LO] + wx3 * pF[f_i[3+4*(2+4*2)] + j*LO]) +
wy3*(wx0 * pF[f_i[0+4*(3+4*2)] + j*LO] + wx1 * pF[f_i[1+4*(3+4*2)] + j*LO] + wx2 * pF[f_i[2+4*(3+4*2)] + j*LO] + wx3 * pF[f_i[3+4*(3+4*2)] + j*LO])
) +
wz3*(
wy0*(wx0 * pF[f_i[0+4*(0+4*3)] + j*LO] + wx1 * pF[f_i[1+4*(0+4*3)] + j*LO] + wx2 * pF[f_i[2+4*(0+4*3)] + j*LO] + wx3 * pF[f_i[3+4*(0+4*3)] + j*LO]) +
wy1*(wx0 * pF[f_i[0+4*(1+4*3)] + j*LO] + wx1 * pF[f_i[1+4*(1+4*3)] + j*LO] + wx2 * pF[f_i[2+4*(1+4*3)] + j*LO] + wx3 * pF[f_i[3+4*(1+4*3)] + j*LO]) +
wy2*(wx0 * pF[f_i[0+4*(2+4*3)] + j*LO] + wx1 * pF[f_i[1+4*(2+4*3)] + j*LO] + wx2 * pF[f_i[2+4*(2+4*3)] + j*LO] + wx3 * pF[f_i[3+4*(2+4*3)] + j*LO]) +
wy3*(wx0 * pF[f_i[0+4*(3+4*3)] + j*LO] + wx1 * pF[f_i[1+4*(3+4*3)] + j*LO] + wx2 * pF[f_i[2+4*(3+4*3)] + j*LO] + wx3 * pF[f_i[3+4*(3+4*3)] + j*LO])
);
}
}
}
template <size_t P>
static
void interpolate_bicubic_unrolled(double *pO, const double *pF,
const double *pX, const double *pY, const double *pZ,
const mwSize ND, const mwSize M, const mwSize N, const mwSize O,
const double s_x, const double o_x,
const double s_y, const double o_y,
const double s_z, const double o_z) {
const mwSize LO = M*N*O;
for (mwSize i=0; i<ND; ++i) {
const double &x_ = pX[i];
const double &y_ = pY[i];
const double &z_ = pZ[i];
const double x = s_x*x_+o_x;
const double y = s_y*y_+o_y;
const double z = s_z*z_+o_z;
const double x_floor = floor(x);
const double y_floor = floor(y);
const double z_floor = floor(z);
const double dx = x-x_floor;
const double dy = y-y_floor;
const double dz = z-z_floor;
const double dxx = dx*dx;
const double dxxx = dxx*dx;
const double dyy = dy*dy;
const double dyyy = dyy*dy;
const double dzz = dz*dz;
const double dzzz = dzz*dz;
const double wx0 = 0.5 * ( - dx + 2.0*dxx - dxxx);
const double wx1 = 0.5 * (2.0 - 5.0*dxx + 3.0 * dxxx);
const double wx2 = 0.5 * ( dx + 4.0*dxx - 3.0 * dxxx);
const double wx3 = 0.5 * ( - dxx + dxxx);
const double wy0 = 0.5 * ( - dy + 2.0*dyy - dyyy);
const double wy1 = 0.5 * (2.0 - 5.0*dyy + 3.0 * dyyy);
const double wy2 = 0.5 * ( dy + 4.0*dyy - 3.0 * dyyy);
const double wy3 = 0.5 * ( - dyy + dyyy);
const double wz0 = 0.5 * ( - dz + 2.0*dzz - dzzz);
const double wz1 = 0.5 * (2.0 - 5.0*dzz + 3.0 * dzzz);
const double wz2 = 0.5 * ( dz + 4.0*dzz - 3.0 * dzzz);
const double wz3 = 0.5 * ( - dzz + dzzz);
int f_i[64];
indices_cubic(
f_i,
int(x_floor-1), int(y_floor-1), int(z_floor-1), M, N, O);
for (mwSize j=0; j<P; ++j) {
pO[i + j*ND] =
wz0*(
wy0*(wx0 * pF[f_i[0+4*(0+4*0)] + j*LO] + wx1 * pF[f_i[1+4*(0+4*0)] + j*LO] + wx2 * pF[f_i[2+4*(0+4*0)] + j*LO] + wx3 * pF[f_i[3+4*(0+4*0)] + j*LO]) +
wy1*(wx0 * pF[f_i[0+4*(1+4*0)] + j*LO] + wx1 * pF[f_i[1+4*(1+4*0)] + j*LO] + wx2 * pF[f_i[2+4*(1+4*0)] + j*LO] + wx3 * pF[f_i[3+4*(1+4*0)] + j*LO]) +
wy2*(wx0 * pF[f_i[0+4*(2+4*0)] + j*LO] + wx1 * pF[f_i[1+4*(2+4*0)] + j*LO] + wx2 * pF[f_i[2+4*(2+4*0)] + j*LO] + wx3 * pF[f_i[3+4*(2+4*0)] + j*LO]) +
wy3*(wx0 * pF[f_i[0+4*(3+4*0)] + j*LO] + wx1 * pF[f_i[1+4*(3+4*0)] + j*LO] + wx2 * pF[f_i[2+4*(3+4*0)] + j*LO] + wx3 * pF[f_i[3+4*(3+4*0)] + j*LO])
) +
wz1*(
wy0*(wx0 * pF[f_i[0+4*(0+4*1)] + j*LO] + wx1 * pF[f_i[1+4*(0+4*1)] + j*LO] + wx2 * pF[f_i[2+4*(0+4*1)] + j*LO] + wx3 * pF[f_i[3+4*(0+4*1)] + j*LO]) +
wy1*(wx0 * pF[f_i[0+4*(1+4*1)] + j*LO] + wx1 * pF[f_i[1+4*(1+4*1)] + j*LO] + wx2 * pF[f_i[2+4*(1+4*1)] + j*LO] + wx3 * pF[f_i[3+4*(1+4*1)] + j*LO]) +
wy2*(wx0 * pF[f_i[0+4*(2+4*1)] + j*LO] + wx1 * pF[f_i[1+4*(2+4*1)] + j*LO] + wx2 * pF[f_i[2+4*(2+4*1)] + j*LO] + wx3 * pF[f_i[3+4*(2+4*1)] + j*LO]) +
wy3*(wx0 * pF[f_i[0+4*(3+4*1)] + j*LO] + wx1 * pF[f_i[1+4*(3+4*1)] + j*LO] + wx2 * pF[f_i[2+4*(3+4*1)] + j*LO] + wx3 * pF[f_i[3+4*(3+4*1)] + j*LO])
) +
wz2*(
wy0*(wx0 * pF[f_i[0+4*(0+4*2)] + j*LO] + wx1 * pF[f_i[1+4*(0+4*2)] + j*LO] + wx2 * pF[f_i[2+4*(0+4*2)] + j*LO] + wx3 * pF[f_i[3+4*(0+4*2)] + j*LO]) +
wy1*(wx0 * pF[f_i[0+4*(1+4*2)] + j*LO] + wx1 * pF[f_i[1+4*(1+4*2)] + j*LO] + wx2 * pF[f_i[2+4*(1+4*2)] + j*LO] + wx3 * pF[f_i[3+4*(1+4*2)] + j*LO]) +
wy2*(wx0 * pF[f_i[0+4*(2+4*2)] + j*LO] + wx1 * pF[f_i[1+4*(2+4*2)] + j*LO] + wx2 * pF[f_i[2+4*(2+4*2)] + j*LO] + wx3 * pF[f_i[3+4*(2+4*2)] + j*LO]) +
wy3*(wx0 * pF[f_i[0+4*(3+4*2)] + j*LO] + wx1 * pF[f_i[1+4*(3+4*2)] + j*LO] + wx2 * pF[f_i[2+4*(3+4*2)] + j*LO] + wx3 * pF[f_i[3+4*(3+4*2)] + j*LO])
) +
wz3*(
wy0*(wx0 * pF[f_i[0+4*(0+4*3)] + j*LO] + wx1 * pF[f_i[1+4*(0+4*3)] + j*LO] + wx2 * pF[f_i[2+4*(0+4*3)] + j*LO] + wx3 * pF[f_i[3+4*(0+4*3)] + j*LO]) +
wy1*(wx0 * pF[f_i[0+4*(1+4*3)] + j*LO] + wx1 * pF[f_i[1+4*(1+4*3)] + j*LO] + wx2 * pF[f_i[2+4*(1+4*3)] + j*LO] + wx3 * pF[f_i[3+4*(1+4*3)] + j*LO]) +
wy2*(wx0 * pF[f_i[0+4*(2+4*3)] + j*LO] + wx1 * pF[f_i[1+4*(2+4*3)] + j*LO] + wx2 * pF[f_i[2+4*(2+4*3)] + j*LO] + wx3 * pF[f_i[3+4*(2+4*3)] + j*LO]) +
wy3*(wx0 * pF[f_i[0+4*(3+4*3)] + j*LO] + wx1 * pF[f_i[1+4*(3+4*3)] + j*LO] + wx2 * pF[f_i[2+4*(3+4*3)] + j*LO] + wx3 * pF[f_i[3+4*(3+4*3)] + j*LO])
);
}
}
}
enum InterpolationMethod { Nearest, Linear, Cubic };
static
InterpolationMethod parseInterpolationMethod(const mxArray *method_string) {
if (method_string == NULL)
return Cubic;
char method[10] = "cubic ";
mxGetString(method_string, method, 9);
if (std::string(method).substr(0, 7) == "nearest")
return Nearest;
else if (std::string(method).substr(0, 6) == "linear")
return Linear;
else if (std::string(method).substr(0, 5) == "cubic")
return Cubic;
else
mexErrMsgTxt("Specify one of nearest, linear, cubic as the interpolation method argument.");
return(Cubic);
}
void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[]) {
if (nlhs>1)
mexErrMsgTxt("Wrong number of output arguments for Z = ba_interp3(Fx, Fy, Fz, F, X, Y, Z, method)");
const mxArray *Fx = NULL;
const mxArray *Fy = NULL;
const mxArray *Fz = NULL;
const mxArray *F = NULL;
const mxArray *X = NULL;
const mxArray *Y = NULL;
const mxArray *Z = NULL;
const mxArray *method = NULL;
if (nrhs==4) {
// ba_interp(F, X, Y, Z);
F = prhs[0];
X = prhs[1];
Y = prhs[2];
Z = prhs[3];
} else if (nrhs==5) {
// ba_interp(F, X, Y, Z, 'method');
F = prhs[0];
X = prhs[1];
Y = prhs[2];
Z = prhs[3];
method = prhs[4];
} else if (nrhs==7) {
// ba_interp(Fx, Fy, Fz, F, X, Y, Z);
Fx= prhs[0];
Fy= prhs[1];
Fz= prhs[2];
F = prhs[3];
X = prhs[4];
Y = prhs[5];
Z = prhs[6];
method = prhs[4];
} else if (nrhs==8) {
// ba_interp(Fx, Fy, Fz, F, X, Y, Z, 'method');
Fx= prhs[0];
Fy= prhs[1];
Fz= prhs[2];
F = prhs[3];
X = prhs[4];
Y = prhs[5];
Z = prhs[6];
method = prhs[7];
} else {
mexErrMsgTxt("Wrong number of input arguments for Z = ba_interp3(Fx, Fy, Fz, F, X, Y, Z, method)");
}
if ((Fx && !mxIsDouble(Fx)) ||(Fy && !mxIsDouble(Fy)) ||(Fz && !mxIsDouble(Fz)) ||
(F && !mxIsDouble(F)) ||
(X && !mxIsDouble(X)) || (Y && !mxIsDouble(Y)) || (Z && !mxIsDouble(Z)))
mexErrMsgTxt("ba_interp3 takes only double arguments for Fx,Fy,Fz,F,X,Y,Z");
const mwSize *F_dims = mxGetDimensions(F);
const mwSize *X_dims = mxGetDimensions(X);
const mwSize *Y_dims = mxGetDimensions(Y);
const mwSize *Z_dims = mxGetDimensions(Z);
const mwSize M=F_dims[0];
const mwSize N=F_dims[1];
const mwSize O=F_dims[2];
if (Fx && mxGetNumberOfElements(Fx)<2) mexErrMsgTxt("Fx needs at least two elements.");
if (Fy && mxGetNumberOfElements(Fy)<2) mexErrMsgTxt("Fy needs at least two elements.");
if (Fz && mxGetNumberOfElements(Fz)<2) mexErrMsgTxt("Fz needs at least two elements.");
if ((mxGetNumberOfDimensions(X) != mxGetNumberOfDimensions(Y)) ||
(mxGetNumberOfDimensions(X) != mxGetNumberOfDimensions(Z)) ||
(mxGetNumberOfElements(X) != mxGetNumberOfElements(Y)) ||
(mxGetNumberOfElements(X) != mxGetNumberOfElements(Z)))
mexErrMsgTxt("X, Y, Z should have the same size");
mwSize P=1;
mwSize outDims[50];
if (mxGetNumberOfDimensions(X) + mxGetNumberOfDimensions(F) - 3 > 50)
mexErrMsgTxt("Can't have that many dimensions in interpolated data.");
for (mwSize i=0; i<mxGetNumberOfDimensions(X); ++i) outDims[i] = X_dims[i];
for (mwSize i=3; i<mxGetNumberOfDimensions(F); ++i) {
outDims[mxGetNumberOfDimensions(X)+i-3] = F_dims[i];
P *= F_dims[i];
}
plhs[0] = mxCreateNumericArray(mxGetNumberOfDimensions(X) + mxGetNumberOfDimensions(F) - 3, outDims, mxDOUBLE_CLASS, mxREAL);
const mwSize ND = mxGetNumberOfElements(X);
const double *pF = mxGetPr(F);
const double *pX = mxGetPr(X);
const double *pY = mxGetPr(Y);
const double *pZ = mxGetPr(Z);
double *pO = mxGetPr(plhs[0]);
if (Fx) {
const double x_low = mxGetPr(Fx)[0]; const double x_high = mxGetPr(Fx)[mxGetNumberOfElements(Fx)-1];
const double y_low = mxGetPr(Fy)[0]; const double y_high = mxGetPr(Fy)[mxGetNumberOfElements(Fy)-1];
const double z_low = mxGetPr(Fz)[0]; const double z_high = mxGetPr(Fz)[mxGetNumberOfElements(Fz)-1];
const double s_x = double(1-N)/(x_low - x_high);
const double s_y = double(1-M)/(y_low - y_high);
const double s_z = double(1-O)/(z_low - z_high);
const double o_x = double(1)-x_low*s_x;
const double o_y = double(1)-y_low*s_y;
const double o_z = double(1)-z_low*s_z;
// Scale X, Y, Z before accessing
// I've deliberatly copied these two paths, such that the compiler can optimize out the multiplication with 1 and addition of 0
switch(parseInterpolationMethod(method)) {
case Nearest:
switch (P) {
case 1: interpolate_nearest_unrolled<1>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
case 2: interpolate_nearest_unrolled<2>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
case 3: interpolate_nearest_unrolled<3>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
case 4: interpolate_nearest_unrolled<4>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
case 5: interpolate_nearest_unrolled<5>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
case 6: interpolate_nearest_unrolled<6>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
case 7: interpolate_nearest_unrolled<7>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
case 8: interpolate_nearest_unrolled<8>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
case 9: interpolate_nearest_unrolled<9>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
default:
interpolate_nearest(pO, pF, pX, pY, pZ, ND, M, N, O, P, s_x, o_x, s_y, o_y, s_z, o_z);
}
break;
case Linear:
switch (P) {
case 1: interpolate_linear_unrolled<1>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
case 2: interpolate_linear_unrolled<2>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
case 3: interpolate_linear_unrolled<3>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
case 4: interpolate_linear_unrolled<4>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
case 5: interpolate_linear_unrolled<5>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
case 6: interpolate_linear_unrolled<6>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
case 7: interpolate_linear_unrolled<7>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
case 8: interpolate_linear_unrolled<8>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
case 9: interpolate_linear_unrolled<9>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
default:
interpolate_linear(pO, pF, pX, pY, pZ, ND, M, N, O, P, s_x, o_x, s_y, o_y, s_z, o_z);
}
break;
case Cubic:
switch (P) {
case 1: interpolate_bicubic_unrolled<1>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
case 2: interpolate_bicubic_unrolled<2>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
case 3: interpolate_bicubic_unrolled<3>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
case 4: interpolate_bicubic_unrolled<4>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
case 5: interpolate_bicubic_unrolled<5>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
case 6: interpolate_bicubic_unrolled<6>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
case 7: interpolate_bicubic_unrolled<7>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
case 8: interpolate_bicubic_unrolled<8>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
case 9: interpolate_bicubic_unrolled<9>(pO, pF, pX, pY, pZ, ND, M, N, O, s_x, o_x, s_y, o_y, s_z, o_z); break;
default:
interpolate_bicubic(pO, pF, pX, pY, pZ, ND, M, N, O, P, s_x, o_x, s_y, o_y, s_z, o_z);
}
break;
default:
mexErrMsgTxt("Unimplemented interpolation method.");
}
} else {
switch(parseInterpolationMethod(method)) {
case Nearest:
switch (P) {
case 1: interpolate_nearest_unrolled<1>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
case 2: interpolate_nearest_unrolled<2>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
case 3: interpolate_nearest_unrolled<3>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
case 4: interpolate_nearest_unrolled<4>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
case 5: interpolate_nearest_unrolled<5>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
case 6: interpolate_nearest_unrolled<6>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
case 7: interpolate_nearest_unrolled<7>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
case 8: interpolate_nearest_unrolled<8>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
case 9: interpolate_nearest_unrolled<9>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
default:
interpolate_nearest(pO, pF, pX, pY, pZ, ND, M, N, O, P, double(1), double(0), double(1), double(0), double(1), double(0));
}
break;
case Linear:
switch (P) {
case 1: interpolate_linear_unrolled<1>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
case 2: interpolate_linear_unrolled<2>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
case 3: interpolate_linear_unrolled<3>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
case 4: interpolate_linear_unrolled<4>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
case 5: interpolate_linear_unrolled<5>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
case 6: interpolate_linear_unrolled<6>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
case 7: interpolate_linear_unrolled<7>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
case 8: interpolate_linear_unrolled<8>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
case 9: interpolate_linear_unrolled<9>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
default:
interpolate_linear(pO, pF, pX, pY, pZ, ND, M, N, O, P, double(1), double(0), double(1), double(0), double(1), double(0));
}
break;
case Cubic:
switch (P) {
case 1: interpolate_bicubic_unrolled<1>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
case 2: interpolate_bicubic_unrolled<2>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
case 3: interpolate_bicubic_unrolled<3>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
case 4: interpolate_bicubic_unrolled<4>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
case 5: interpolate_bicubic_unrolled<5>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
case 6: interpolate_bicubic_unrolled<6>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
case 7: interpolate_bicubic_unrolled<7>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
case 8: interpolate_bicubic_unrolled<8>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
case 9: interpolate_bicubic_unrolled<9>(pO, pF, pX, pY, pZ, ND, M, N, O, double(1), double(0), double(1), double(0), double(1), double(0)); break;
default:
interpolate_bicubic(pO, pF, pX, pY, pZ, ND, M, N, O, P, double(1), double(0), double(1), double(0), double(1), double(0));
}
break;
default:
mexErrMsgTxt("Unimplemented interpolation method.");
}
}
}