forked from eriklindernoren/ML-From-Scratch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregression.py
235 lines (204 loc) · 9.6 KB
/
regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from __future__ import print_function
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import datasets
import sys
import os
import math
# Import helper functions
from mlfromscratch.utils.data_manipulation import k_fold_cross_validation_sets, normalize
from mlfromscratch.utils.data_manipulation import train_test_split, polynomial_features
from mlfromscratch.utils.data_operation import mean_squared_error
from mlfromscratch.utils.loss_functions import SquareLoss
class Regression(object):
""" Base regression model. Models the relationship between a scalar dependent variable y and the independent
variables X.
Parameters:
-----------
reg_factor: float
The factor that will determine the amount of regularization and feature
shrinkage.
n_iterations: float
The number of training iterations the algorithm will tune the weights for.
learning_rate: float
The step length that will be used when updating the weights.
gradient_descent: boolean
True or false depending if gradient descent should be used when training. If
false then we use batch optimization by least squares.
"""
def __init__(self, reg_factor, n_iterations, learning_rate, gradient_descent):
self.w = None
self.n_iterations = n_iterations
self.learning_rate = learning_rate
self.gradient_descent = gradient_descent
self.reg_factor = reg_factor
self.square_loss = SquareLoss()
def fit(self, X, y):
# Insert constant ones as first column (for bias weights)
X = np.insert(X, 0, 1, axis=1)
n_features = np.shape(X)[1]
# Get weights by gradient descent opt.
if self.gradient_descent:
# Initial weights randomly [0, 1]
self.w = np.random.random((n_features, ))
# Do gradient descent for n_iterations
for _ in range(self.n_iterations):
grad_w = self.square_loss.gradient(y, X, self.w) + self.reg_factor * self.w
self.w -= self.learning_rate * grad_w
# Get weights by least squares (by pseudoinverse)
else:
U, S, V = np.linalg.svd(
X.T.dot(X) + self.reg_factor * np.identity(n_features))
S = np.diag(S)
X_sq_reg_inv = V.dot(np.linalg.pinv(S)).dot(U.T)
self.w = X_sq_reg_inv.dot(X.T).dot(y)
def predict(self, X):
# Insert constant ones for bias weights
X = np.insert(X, 0, 1, axis=1)
y_pred = X.dot(self.w)
return y_pred
class LinearRegression(Regression):
"""Linear model.
Parameters:
-----------
n_iterations: float
The number of training iterations the algorithm will tune the weights for.
learning_rate: float
The step length that will be used when updating the weights.
gradient_descent: boolean
True or false depending if gradient descent should be used when training. If
false then we use batch optimization by least squares.
"""
def __init__(self, n_iterations=1000, learning_rate=0.001, gradient_descent=True):
super(RidgeRegression, self).__init__(reg_factor=0, n_iterations=n_iterations, \
learning_rate=learning_rate, gradient_descent=gradient_descent)
class PolynomialRegression(Regression):
"""Performs a non-linear transformation of the data before fitting the model
and doing predictions which allows for doing non-linear regression.
Parameters:
-----------
degree: int
The power of the polynomial that the independent variable X will be transformed to.
n_iterations: float
The number of training iterations the algorithm will tune the weights for.
learning_rate: float
The step length that will be used when updating the weights.
gradient_descent: boolean
True or false depending if gradient descent should be used when training. If
false then we use batch optimization by least squares.
"""
def __init__(self, degree, n_iterations=3000, learning_rate=0.001, gradient_descent=True):
self.degree = degree
super(PolynomialRegression, self).__init__(reg_factor=0, n_iterations=n_iterations, \
learning_rate=learning_rate, gradient_descent=gradient_descent)
def fit(self, X, y):
X_transformed = polynomial_features(X, degree=self.degree)
super(PolynomialRegression, self).fit(X_transformed, y)
def predict(self, X):
X_transformed = polynomial_features(X, degree=self.degree)
return super(PolynomialRegression, self).predict(X_transformed)
class RidgeRegression(Regression):
"""Also referred to as Tikhonov regularization. Linear regression model with a regularization factor.
Model that tries to balance the fit of the model with respect to the training data and the complexity
of the model. A large regularization factor with decreases the variance of the model.
Parameters:
-----------
reg_factor: float
The factor that will determine the amount of regularization and feature
shrinkage.
n_iterations: float
The number of training iterations the algorithm will tune the weights for.
learning_rate: float
The step length that will be used when updating the weights.
gradient_descent: boolean
True or false depending if gradient descent should be used when training. If
false then we use batch optimization by least squares.
"""
def __init__(self, reg_factor, n_iterations=1000, learning_rate=0.001, gradient_descent=True):
super(RidgeRegression, self).__init__(reg_factor, n_iterations, learning_rate, gradient_descent)
class PolynomialRidgeRegression(Regression):
"""Similar to regular ridge regression except that the data is transformed to allow
for polynomial regression.
Parameters:
-----------
degree: int
The power of the polynomial that the independent variable X will be transformed to.
reg_factor: float
The factor that will determine the amount of regularization and feature
shrinkage.
n_iterations: float
The number of training iterations the algorithm will tune the weights for.
learning_rate: float
The step length that will be used when updating the weights.
gradient_descent: boolean
True or false depending if gradient descent should be used when training. If
false then we use batch optimization by least squares.
"""
def __init__(self, degree, reg_factor, n_iterations=3000, learning_rate=0.01, gradient_descent=True):
self.degree = degree
super(PolynomialRidgeRegression, self).__init__(reg_factor, n_iterations, learning_rate, gradient_descent)
def fit(self, X, y):
X_transformed = normalize(polynomial_features(X, degree=self.degree))
super(PolynomialRidgeRegression, self).fit(X_transformed, y)
def predict(self, X):
X_transformed = normalize(polynomial_features(X, degree=self.degree))
return super(PolynomialRidgeRegression, self).predict(X_transformed)
def main():
# Load temperature data
data = pd.read_csv('mlfromscratch/data/TempLinkoping2016.txt', sep="\t")
time = np.atleast_2d(data["time"].as_matrix()).T
temp = np.atleast_2d(data["temp"].as_matrix()).T
X = time # fraction of the year [0, 1]
y = temp
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)
poly_degree = 11
# Finding regularization constant using cross validation
lowest_error = float("inf")
best_reg_factor = None
print ("Finding regularization constant using cross validation:")
k = 10
for reg_factor in np.arange(0, 0.1, 0.01):
cross_validation_sets = k_fold_cross_validation_sets(
X_train, y_train, k=k)
mse = 0
for _X_train, _X_test, _y_train, _y_test in cross_validation_sets:
clf = PolynomialRidgeRegression(degree=poly_degree,
reg_factor=reg_factor,
learning_rate=0.001,
n_iterations=10000)
clf.fit(_X_train, _y_train)
y_pred = clf.predict(_X_test)
_mse = mean_squared_error(_y_test, y_pred)
mse += _mse
mse /= k
# Print the mean squared error
print ("\tMean Squared Error: %s (regularization: %s)" % (mse, reg_factor))
# Save reg. constant that gave lowest error
if mse < lowest_error:
best_reg_factor = reg_factor
lowest_error = mse
# Make final prediction
clf = PolynomialRidgeRegression(degree=poly_degree,
reg_factor=best_reg_factor,
learning_rate=0.001,
n_iterations=10000)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print ("Mean squared error: %s (given by reg. factor: %s)" % (lowest_error, best_reg_factor))
y_pred_line = clf.predict(X)
# Color map
cmap = plt.get_cmap('viridis')
# Plot the results
m1 = plt.scatter(366 * X_train, y_train, color=cmap(0.9), s=10)
m2 = plt.scatter(366 * X_test, y_test, color=cmap(0.5), s=10)
plt.plot(366 * X, y_pred_line, color='black', linewidth=2, label="Prediction")
plt.suptitle("Polynomial Ridge Regression")
plt.title("MSE: %.2f" % mse, fontsize=10)
plt.xlabel('Day')
plt.ylabel('Temperature in Celcius')
plt.legend((m1, m2), ("Training data", "Test data"), loc='lower right')
plt.show()
if __name__ == "__main__":
main()