-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLogic.hs
201 lines (149 loc) · 5.37 KB
/
Logic.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE PatternSynonyms #-}
module Logic where
import Data.Char (toLower)
import Data.List
type Var = String
data Exp = Op Op [Exp]
| Var Var
| Con String
| Lam (Exp -> Exp)
| Quant Amount Pol Var Exp Exp
check :: Bool -> Maybe ()
check c = if c then Just () else Nothing
-- | solveThe metaVariable t1 t2. metaVariable occurs t1; not in t2.
-- Attempt to unify t1 and t2; return the necessary assignments of metaVariable if it exists.
-- ATTN: currently unused. But this could be a more principled
-- solution to solving for definites (or times). Rather than having a
-- special environment, solve for a variable that makes the thing that you lookup true.
solveThe :: Int -> Var -> [(Exp,Exp)] -> Maybe [Exp]
solveThe _ _ [] = Just []
solveThe n meta ((Op op1 e1,Op op2 e2):cs)
= check (op1 == op2 && length e1 == length e2) >> solveThe n meta (zip e1 e2 ++ cs)
solveThe n meta ((Var x,t):cs) | x == meta = (t:) <$> solveThe n meta cs
solveThe n meta ((Var x,Var y):cs) | x == y = solveThe n meta cs
solveThe n meta ((Lam f,Lam g):cs) = solveThe (n+1) meta ((f v, g v):cs)
where v = Var $ "_V_" ++ show n
solveThe n meta ((Quant a1 p1 v1 d1 b1,Quant a2 p2 v2 d2 b2):cs) =
check (a1 == a2 && p1 == p2 && v1 == v2) >>
solveThe n meta ((d1,d2):(b1,b2):cs)
solveThe _ _ _ = Nothing
eqExp' :: Exp -> Exp -> Bool
eqExp' = eqExp 0 []
eqNat' :: Nat -> Nat -> Bool
eqNat' = eqNat 0 []
instance Eq Nat where
(==) = eqNat'
eqExp :: Int -> [(Var,Var)] -> Exp -> Exp -> Bool
eqExp n equs e1 e2 = case (e1,e2) of
(Op op1 exps1,Op op2 exps2) -> op1 == op2 && length exps1 == length exps2 && and (zipWith (eqExp n equs) (exps1) (exps2))
(Quant a1 p1 v1 t1 b1,Quant a2 p2 v2 t2 b2) -> eqAmount n equs a1 a2 && p1 == p2 && eqExp n eq' t1 t2 && eqExp n eq' b1 b2
where eq' = (v1,v2):equs
(Lam f1,Lam f2) -> eqExp (n+1) equs (f1 x) (f2 x)
where x = Var $ "_V" ++ show n
(Var x,Var x') -> x == x' || (x,x') `elem` equs
(Con x,Con x') -> x == x'
_ -> False
eqAmount :: Int -> [(Var, Var)] -> Amount -> Amount -> Bool
eqAmount n eqs (Exact x) (Exact x') = eqNat n eqs x x'
eqAmount n eqs(AtLeast x) (AtLeast x') = eqNat n eqs x x'
eqAmount _ _ One One = True
eqAmount _ _ Few Few = True
eqAmount _ _ Several Several = True
eqAmount _ _ Many Many = True
eqAmount _ _ Most Most = True
eqAmount _ _ Lots Lots = True
eqAmount _ _ _ _ = False
eqNat :: Int -> [(Var, Var)] -> Nat -> Nat -> Bool
eqNat n es (Nat x) (Nat x') = eqExp n es x x'
type Type = Exp
newtype Nat = Nat {fromNat :: Exp}
instance Num Nat where
fromInteger n = Nat (Con (show n))
(Nat x) + (Nat y) = Nat (BinOp Plus x y)
data Amount' n = One | Few | Several | Many | Most | Lots | Exact n | AtLeast n -- amount for the *positive* polarity
deriving (Show,Eq,Functor,Foldable,Traversable)
type Amount = Amount' Nat
data Op = Fld String -- ^ field lookup
| Custom String
| App
| Not
| And
| Or
| Plus
| Implies
| ImpliesOften
| LAST_OPERATOR
deriving (Eq,Show)
pattern TRUE :: Exp
pattern TRUE = Con "True"
pattern FALSE :: Exp
pattern FALSE = Con "False"
pattern APP :: Exp -> Exp -> Exp
pattern APP f x = BinOp App f x
pattern NOT :: Exp -> Exp
pattern NOT x = UnOp Not x
not' :: Exp -> Exp
not' = NOT
lam :: (Exp -> Exp) -> Exp
lam f = case f (Var eta) of
APP b (Var "__ETA__") | not (eta `elem` freeVars b) -> b
_ -> Lam f
where eta = "__ETA__"
app :: Exp -> Exp -> Exp
app (Lam f) x = f x
app f x = APP f x
apps :: Exp -> [Exp] -> Exp
apps f args = foldl app f args
true :: Exp
true = TRUE
pattern BinOp :: Op -> Exp -> Exp -> Exp
pattern BinOp op x y = Op op [(x),(y)]
pattern UnOp :: Op -> Exp -> Exp
pattern UnOp op x = Op op [(x)]
(<->) :: Exp -> Exp -> Exp
a <-> b = (a --> b) ∧ (b --> a)
(-->),(~~>) :: Exp -> Exp -> Exp
x --> y = BinOp Implies x y
x ~~> y = BinOp ImpliesOften x y
pattern (:∧) :: Exp -> Exp -> Exp
pattern x :∧ y = BinOp And x y
(∧) :: Exp -> Exp -> Exp
TRUE ∧ y = y
y ∧ TRUE = y
(x :∧ y) ∧ z = x :∧ (y ∧ z)
x ∧ y = x :∧ y
(∨) :: Exp -> Exp -> Exp
x ∨ y = BinOp Or x y
data Pol = Pos | Neg | Both deriving (Eq,Ord,Show)
quoteTex :: String -> String
quoteTex = concatMap q
where q x | x `elem` "_#\\%" = "\\" ++ [x]
| otherwise = [x]
-- showTex :: Exp -> [Char]
-- showTex = texExp LAST_OPERATOR
pattern Forall :: Var -> Type -> Exp -> Exp
pattern Forall x dom body = Quant One Neg x dom body
pattern Exists :: Var -> Type -> Exp -> Exp
pattern Exists x dom body = Quant One Pos x dom body
-- pattern Sigma x dom body = Quant Pi Pos x dom body
pattern MOST :: Var -> Type -> Exp -> Exp
pattern MOST x dom body = Quant Most Neg x dom body
pattern FEW :: Var -> Type -> Exp -> Exp
pattern FEW x dom body = Quant Few Pos x dom body
pattern SEVERAL :: Var -> Type -> Exp -> Exp
pattern SEVERAL x dom body = Quant Several Pos x dom body
normalize :: [Char] -> [Char]
normalize = map toLower
freeVars :: Exp -> [Var]
freeVars (Con _x) = []
freeVars (Lam f) = freeVars (f (Con "__FREE__"))
freeVars (Var x) = [x]
freeVars (Quant _ _ x dom body) = (freeVars dom ++ nub (freeVars body)) \\ [x]
freeVars (Op _ xs) = (concatMap (freeVars) xs)
parens :: [Char] -> [Char]
parens x = "(" ++ x ++ ")"