-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTutorial.v
112 lines (91 loc) · 3.18 KB
/
Tutorial.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
Parameter PN : Type .
Definition S : Type := Prop .
Definition Cl : Type := Prop .
Definition VP : Type := PN -> Prop .
Definition NP : Type := VP -> Prop .
(* Definition NP : Type := PN . *)
Definition AP : Type := PN -> Prop .
Definition A : Type := AP .
Definition CN : Type := PN -> Prop .
Definition Det : Type := CN -> NP .
Definition N : Type := CN .
Definition V : Type := VP .
Definition V2 : Type := PN -> VP .
Definition AdA : Type := AP -> AP .
Definition Pol : Type := Prop -> Prop .
Definition Conj : Type := Prop -> Prop -> Prop .
Parameter man_N : N.
Parameter woman_N : N .
Parameter house_N : N.
Parameter tree_N : N .
Parameter big_A : A .
Parameter small_A : A .
Parameter green_A : A .
Parameter walk_V : V .
Parameter arrive_V : V .
Parameter love_V2 : V2 .
Parameter please_V2 : V2 .
Parameter john_PN :PN .
Parameter mary_PN : PN.
Parameter AdAP : AdA -> AP -> AP.
Parameter we_NP : NP.
Parameter you_NP : NP.
Parameter very_AdA : AdA.
Definition and_Conj : Conj := fun x y => x /\ y.
Definition or_Conj : Conj := fun x y => x \/ y.
Definition Pos : Pol := fun p => p.
Definition Neg : Pol := fun p => not p.
Definition UseCl : Pol -> Cl -> S :=
fun pol c => pol c.
Definition UsePN : PN -> NP := fun pn vp => vp pn.
Definition UseV : V -> VP := fun v => v.
Definition PredVP : NP -> VP -> Cl := fun np vp => np vp.
(* Definition PredVP : NP -> VP -> Cl := fun np vp => vp np. *)
(* Definition UsePN : PN -> NP := fun x => x. *)
Definition DetCN : Det -> CN -> NP := fun det cn => det cn.
Definition every_Det : Det := fun cn vp => forall x, cn x -> vp x.
Definition some_Det : Det := fun cn vp => exists x, cn x /\ vp x.
Definition UseN : N -> CN := fun x => x.
Definition ModCN : AP -> CN -> CN := fun ap cn x => ap x /\ cn x.
Definition CompAP : AP -> VP := fun ap x => ap x.
Definition UseA : A -> AP := fun a => a.
Definition ComplV2 : V2 -> NP -> VP := fun v object subject => object (v subject).
Definition ConjS : Conj -> S -> S -> S := fun c => c.
Definition ConjNP : Conj -> NP -> NP -> NP := fun c np1 np2 vp =>
np1 (fun x => np2 (fun y => c (vp x) (vp y))).
Theorem thm0 : UseCl Pos (PredVP (UsePN john_PN) walk_V) ->
UseCl Pos (PredVP (UsePN john_PN) walk_V).
intro H.
exact H.
Qed.
Theorem thm1 : UseCl Pos (PredVP (UsePN john_PN) walk_V) ->
UseCl Neg (PredVP (UsePN john_PN) walk_V) -> False.
unfold UseCl.
unfold Pos.
unfold Neg.
intros P N.
exact (N P).
Qed.
Theorem thm1prime : forall c, UseCl Pos c -> UseCl Neg c -> False.
cbv.
intros clause P N.
exact (N P).
Qed.
Eval cbv in UseCl Pos (PredVP (UsePN john_PN) walk_V).
Definition everyoneNP : NP := fun vp => forall x, vp x.
Theorem thm2 :
UseCl Pos (PredVP (DetCN every_Det (UseN man_N)) walk_V) ->
(man_N john_PN) ->
(walk_V john_PN).
cbv.
intros H1 H2.
exact (H1 john_PN H2).
Qed.
(* "every green tree is green." *)
Theorem thm3 :
UseCl Pos (PredVP (DetCN every_Det (ModCN (UseA green_A) (UseN tree_N))) (CompAP (UseA green_A))).
cbv.
tauto.
Qed.
(*"John loves Mary and a tree."*)
Eval cbv in UseCl Pos (PredVP (UsePN john_PN) (ComplV2 love_V2 (ConjNP and_Conj (UsePN mary_PN) (DetCN some_Det (UseN tree_N))))).