forked from ymjdz/MATLAB-Codes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNav_equations_ECEF.m
87 lines (75 loc) · 3.33 KB
/
Nav_equations_ECEF.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
function [r_eb_e,v_eb_e,C_b_e] = Nav_equations_ECEF(tor_i,old_r_eb_e,...
old_v_eb_e,old_C_b_e,f_ib_b,omega_ib_b)
%Nav_equations_ECEF - Runs precision ECEF-frame inertial navigation
%equations
%
% Software for use with "Principles of GNSS, Inertial, and Multisensor
% Integrated Navigation Systems," Second Edition.
%
% This function created 1/4/2012 by Paul Groves
%
% Inputs:
% tor_i time interval between epochs (s)
% old_r_eb_e previous Cartesian position of body frame w.r.t. ECEF
% frame, resolved along ECEF-frame axes (m)
% old_C_b_e previous body-to-ECEF-frame coordinate transformation matrix
% old_v_eb_e previous velocity of body frame w.r.t. ECEF frame, resolved
% along ECEF-frame axes (m/s)
% f_ib_b specific force of body frame w.r.t. ECEF frame, resolved
% along body-frame axes, averaged over time interval (m/s^2)
% omega_ib_b angular rate of body frame w.r.t. ECEF frame, resolved
% about body-frame axes, averaged over time interval (rad/s)
% Outputs:
% r_eb_e Cartesian position of body frame w.r.t. ECEF frame, resolved
% along ECEF-frame axes (m)
% v_eb_e velocity of body frame w.r.t. ECEF frame, resolved along
% ECEF-frame axes (m/s)
% C_b_e body-to-ECEF-frame coordinate transformation matrix
% Copyright 2012, Paul Groves
% License: BSD; see license.txt for details
% parameters
omega_ie = 7.292115E-5; % Earth rotation rate (rad/s)
% Begins
% ATTITUDE UPDATE
% From (2.145) determine the Earth rotation over the update interval
% C_Earth = C_e_i' * old_C_e_i
alpha_ie = omega_ie * tor_i;
C_Earth = [cos(alpha_ie), sin(alpha_ie), 0;...
-sin(alpha_ie), cos(alpha_ie), 0;...
0, 0, 1];
% Calculate attitude increment, magnitude, and skew-symmetric matrix
alpha_ib_b = omega_ib_b * tor_i;
mag_alpha = sqrt(alpha_ib_b' * alpha_ib_b);
Alpha_ib_b = Skew_symmetric(alpha_ib_b);
% Obtain coordinate transformation matrix from the new attitude w.r.t. an
% inertial frame to the old using Rodrigues' formula, (5.73)
if mag_alpha>1.E-8
C_new_old = eye(3) + sin(mag_alpha) / mag_alpha * Alpha_ib_b +...
(1 - cos(mag_alpha)) / mag_alpha^2 * Alpha_ib_b * Alpha_ib_b;
else
C_new_old = eye(3) + Alpha_ib_b;
end %if mag_alpha
% Update attitude using (5.75)
C_b_e = C_Earth * old_C_b_e * C_new_old;
% SPECIFIC FORCE FRAME TRANSFORMATION
% Calculate the average body-to-ECEF-frame coordinate transformation
% matrix over the update interval using (5.84) and (5.85)
if mag_alpha>1.E-8
ave_C_b_e = old_C_b_e * (eye(3) + (1 - cos(mag_alpha)) / mag_alpha^2 ...
* Alpha_ib_b + (1 - sin(mag_alpha) / mag_alpha) / mag_alpha^2 ...
* Alpha_ib_b * Alpha_ib_b) - 0.5 * Skew_symmetric([0;0;alpha_ie])...
* old_C_b_e;
else
ave_C_b_e = old_C_b_e - 0.5 * Skew_symmetric([0;0;alpha_ie]) *...
old_C_b_e;
end %if mag_alpha
% Transform specific force to ECEF-frame resolving axes using (5.85)
f_ib_e = ave_C_b_e * f_ib_b;
% UPDATE VELOCITY
% From (5.36),
v_eb_e = old_v_eb_e + tor_i * (f_ib_e + Gravity_ECEF(old_r_eb_e) -...
2 * Skew_symmetric([0;0;omega_ie]) * old_v_eb_e);
% UPDATE CARTESIAN POSITION
% From (5.38),
r_eb_e = old_r_eb_e + (v_eb_e + old_v_eb_e) * 0.5 * tor_i;
% Ends