forked from keon/algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcosine_similarity.py
43 lines (33 loc) · 1.01 KB
/
cosine_similarity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
"""
Calculate cosine similarity between given two 1d list.
Two list must have the same length.
Example:
cosine_similarity([1, 1, 1], [1, 2, -1]) # output : 0.47140452079103173
"""
import math
def _l2_distance(vec):
"""
Calculate l2 distance from two given vectors.
"""
norm = 0.
for element in vec:
norm += element * element
norm = math.sqrt(norm)
return norm
def cosine_similarity(vec1, vec2):
"""
Calculate cosine similarity between given two vectors
:type vec1: list
:type vec2: list
"""
if len(vec1) != len(vec2):
raise ValueError("The two vectors must be the same length. Got shape " + str(len(vec1))
+ " and " + str(len(vec2)))
norm_a = _l2_distance(vec1)
norm_b = _l2_distance(vec2)
similarity = 0.
# Calculate the dot product of two vectors
for vec1_element, vec2_element in zip(vec1, vec2):
similarity += vec1_element * vec2_element
similarity /= (norm_a * norm_b)
return similarity