-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAdaptativeDropout.py
96 lines (59 loc) · 2.65 KB
/
AdaptativeDropout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import poutyne as pt
from poutyne.framework.metrics import batch_metrics
from bandit_dropout import *
from callback import *
from architecture import *
import torchvision.datasets as datasets
from torch.utils.data import DataLoader, random_split
import torchvision.transforms as transforms
import torch
import matplotlib.pyplot as plt
from utils import set_random_seed, save_to_pkl
import pickle as pk
from utils import save_loss_acc_plot, save_to_pkl,set_random_seed
from bandit_dropout import egreedy_bandit_dropout,dynamic_linucb_bandit_dropout
from callback import activateGradient
class architectureCIFAR10(nn.Module):
def __init__(self):
super(architectureCIFAR10, self).__init__()
self.conv1 = nn.Conv2d(3,32,3)
self.maxpool1 = nn.MaxPool2d(2)
self.conv2 = nn.Conv2d(32,10,3)
self.flat = nn.Flatten()
self.batchnorm = nn.BatchNorm1d(1690)
self.classification = nn.Linear(1690,10)
self.dropout = Standout(self.classification,0.5, 1)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.maxpool1(x)
x = self.conv2(x)
x = self.flat(x)
x = self.batchnorm(x)
previous=x
x = self.classification(x)
x = F.relu(x)
x = self.dropout(previous,x)
return x
train_size = 4000
valid_size = 2000
batch_size = 32
transformer = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
def run_experience(seed=None, exp_name = "Adaptative_Dropout",nb_test=20, nb_epochs=20):
set_random_seed(seed=seed)
dataset_CIFAR10 = datasets.CIFAR10(root='./data', train=True, download=True, transform=transformer)
train_dataset_CIFAR10, valid_dataset_CIFAR10, test_dataset_CIFAR10 = random_split(dataset_CIFAR10,[train_size, valid_size,len(dataset_CIFAR10)-valid_size-train_size])
train_dataloader_CIFAR10 = DataLoader(train_dataset_CIFAR10, batch_size=32, shuffle=True)
valid_dataloader_CIFAR10 = DataLoader(valid_dataset_CIFAR10, batch_size=32, shuffle=True)
history_list = []
for test_indice in range(nb_test):
modele = architectureCIFAR10()
pt_modele = pt.Model(modele, "sgd", "cross_entropy", batch_metrics=["accuracy"])
history = pt_modele.fit_generator(train_dataloader_CIFAR10,valid_dataloader_CIFAR10,epochs=nb_epochs)
history_list.append(history)
save_to_pkl(history_list,exp_name)
save_loss_acc_plot(history_list,exp_name)
if __name__ == '__main__':
run_experience(42, "adaptative_dropout",nb_test=2,nb_epochs=2)