-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.m
322 lines (284 loc) · 13.9 KB
/
generate.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
%GENERATE generate particle images
close all; clear; clc; drawnow
fontsize = 24;
fontname = 'Times New Roman';
%% parameter setting
img_size=512; % image size, e.g. 512x512
rho=0.6;
rho_wall = 0.03;
particle_num=round(img_size^2*rho); % num of particles
wall_num=round(img_size^2*rho_wall); % num of particles on the wall
z0=0.333; % light sheet thickness
z_move=10; % out-of-plane-movement when generating intensity distribution in z direction
dp=2; % particle diameter: unit: pixel
ddp=dp/2; % particle diameter variation: unit: pixel
sizey=img_size;
sizex=img_size;
delta_x = 0.3; % length of chosen part of aerofoil
thick_y = sizey/sizex*delta_x; % velocity field thickness
level = 2^16-1; % uint16
noise_mag = level/1000; % noise magnitude
angle = 10; % rotation angle
flag = 0; % flag = 1 means y >= 0 and flag = 0 means y < 0
offset_ratio = 2; % 1m length in real world means offset_ratio pixel in image
%% load and show aerofoil and velocity field
% show aerofoil and velocity field
afoil = importdata('naca4412 aerofoil.txt','\t',1);
afoil_x = afoil.data(:,3); afoil_y = afoil.data(:,4);
vfield = importdata('NACA4412 flow field',',',1);
field_x = vfield.data(:,2); field_y = vfield.data(:,3);
field_u = vfield.data(:,4); field_v = vfield.data(:,5);
f = figure('Name','Aerofoil and Velocity'); figure(f)
plot(afoil_x,afoil_y); axis image
hold on; quiver(field_x,field_y,field_u,field_v,'g','AutoScaleFactor',0.5); hold off
xlabel('x'); ylabel('y'); title('all'); xlim([-7 15]); ylim([-7 7])
set(gcf,'position',get(0,'ScreenSize')); set(gca,'FontName',fontname,'FontSize',fontsize)
saveas(gcf,'img/all_flow_field','png');
% show part of the aerofoil and velocity field
chord = 1;
end_x = delta_x + (chord-delta_x)*rand; % randomly choose part of aerofoil
start_x = end_x - delta_x;
partfield_idx = field_x >= start_x & field_x <= end_x;
partfoil_idx = afoil_x >= start_x & afoil_x <= end_x;
if flag == 1 % the upper part of aerofoil
partfield_idx = partfield_idx & field_y >= 0 & field_y <= thick_y;
afoil_idx = afoil_y >= 0;
partfoil_idx = partfoil_idx & afoil_idx;
elseif flag == 0 % the upper part of aerofoil
thick_y = -thick_y;
partfield_idx = partfield_idx & field_y < 0 & field_y >= thick_y;
afoil_idx = afoil_y < 0;
partfoil_idx = partfoil_idx & afoil_idx;
end
afoil_interp_x = afoil_x(afoil_idx);
afoil_interp_y = afoil_y(afoil_idx);
[afoil_interp_x,I] = sort(afoil_interp_x); % The grid vectors must be strictly monotonically increasing when using griddedInterpolant
afoil_interp_y = afoil_interp_y(I);
F_afoil = griddedInterpolant(afoil_interp_x,afoil_interp_y,'linear','nearest');
output_y = F_afoil([start_x, end_x]);
start_y = output_y(1); end_y = output_y(2);
if flag == 1
afoil_xoi = [end_x,afoil_x(partfoil_idx)',start_x];
afoil_yoi = [end_y,afoil_y(partfoil_idx)',start_y];
elseif flag == 0
afoil_xoi = [start_x,afoil_x(partfoil_idx)',end_x];
afoil_yoi = [start_y,afoil_y(partfoil_idx)',end_y];
end
% part of flow field
part_x = field_x(partfield_idx); part_y = field_y(partfield_idx);
part_u = field_u(partfield_idx); part_v = field_v(partfield_idx);
min_x = start_x; max_x = end_x;
min_y = min(0, thick_y); max_y = max(0, thick_y);
f = figure('Name','Part of Aerofoil'); figure(f)
plot(afoil_xoi,afoil_yoi,'LineWidth',3); axis image
hold on; quiver(part_x,part_y,part_u,part_v,'g','AutoScaleFactor',0.5); hold off
xlabel('x'); ylabel('y'); title('Part of Velocity Field of NACA 4412')
set(gcf,'position',get(0,'ScreenSize')); set(gca,'FontName',fontname,'FontSize',fontsize)
saveas(gcf,'img/part_flow_field','png');
%% generate particle images
disp(['Generating random artificial PIV images with ' num2str(particle_num) ' particles...'])
A=zeros(sizey,sizex); B=A;
[I0, I1, d] = I_d(particle_num,z_move,level,dp,ddp,z0);
% paritcle random position in real world
x0=min_x + rand(particle_num,1)*max_x;
y_low_limit = F_afoil(x0);
y0=y_low_limit+rand(particle_num,1).*(thick_y-y_low_limit);
% transfer real-world coordinate to image coordinate using scaling and translation
multiple = sizex / delta_x;
afoil_x_img = afoil_xoi*multiple;
x_move = min(afoil_x_img); % y need not to move
afoil_x_img = afoil_x_img-x_move;
x0 = x0*multiple-x_move;
if flag == 1
afoil_y_img = afoil_yoi*multiple;
y0 = y0*multiple;
elseif flag == 0
afoil_y_img = -afoil_yoi*multiple;
y0 = -y0*multiple;
end
rd = -8.0 ./ d.^2;
x_interp = linspace(min_x,max_x,sizex);
y_interp = linspace(min_y,max_y,sizey);
[X_interp,Y_interp] = ndgrid(x_interp,y_interp);
[X,Y] = ndgrid(1:sizex,1:sizey);
F_u = scatteredInterpolant(part_x,part_y,part_u,'linear','nearest');
offsetx_real = F_u(X_interp,Y_interp);
F_u = griddedInterpolant(X,Y,offsetx_real,'linear','nearest'); % image coordinate
offsetx = F_u(x0,y0);
F_v = scatteredInterpolant(part_x,part_y,part_v,'linear','nearest');
offsety_real = F_v(X_interp,Y_interp);
F_v = griddedInterpolant(X,Y,offsety_real,'linear','nearest');
offsety = F_v(x0,y0);
offsetx = offsetx*offset_ratio; offsety = offsety*offset_ratio;
[xlimit1, xlimit2, ylimit1, ylimit2] = cal_extent(particle_num,x0,y0,d,sizex,sizey); % original image
[xlimit3, xlimit4, ylimit3, ylimit4] = cal_extent(particle_num,x0,y0,d,sizex,sizey,offsetx,offsety); % shifted image
ctr=0;
for n=1:particle_num % calculate grayscale of particle images
ctr=ctr+1;
if ctr==10000
ctr=0;
fprintf('.')
end
r = rd(n);
for j=xlimit1(n):xlimit2(n) % place particles with gaussian intensity profile
for i=ylimit1(n):ylimit2(n)
A(i,j)=A(i,j)+I0(n)*exp(((j-x0(n))^2+(i-y0(n))^2)*r);
end
end
for j=xlimit3(n):xlimit4(n)
for i=ylimit3(n):ylimit4(n)
B(i,j)=B(i,j)+I1(n)*exp(((j-x0(n)+offsetx(n))^2+(i-y0(n)+offsety(n))^2)*r);
end
end
end
%% add bright spots on the wall
x_wall = min_x + rand(wall_num,1)*max_x;
y_wall = F_afoil(x_wall);
% coordinate transformation
x_wall = x_wall*multiple-x_move; y_wall = y_wall*multiple;
dy = 2; % unit: pixel
y_wall = y_wall + 2*dy*rand(wall_num,1)-dy;
if flag == 0
y_wall = -y_wall;
end
[I0, I1, d] = I_d(wall_num,z_move,level,dp,ddp,z0);
[xlimit5, xlimit6, ylimit5, ylimit6] = cal_extent(wall_num,x_wall,y_wall,d,sizex,sizey); % original image
for n = 1:wall_num
for j = xlimit5(n):xlimit6(n)
for i = ylimit5(n):ylimit6(n)
A(i,j)=A(i,j)+I0(n)*exp(((j-x_wall(n))^2+(i-y_wall(n))^2)*r);
B(i,j)=B(i,j)+I1(n)*exp(((j-x_wall(n))^2+(i-y_wall(n))^2)*r);
end
end
end
% add Gaussian noise
A = A + noise_mag*randn(size(A));
B = B + noise_mag*randn(size(B));
A(A>level)=level;
B(B>level)=level;
img_fixed=uint16(A);
img_move=uint16(B);
%% test synthetic images using PIV algorithm
f = figure('Name','image1'); figure(f)
if flag == 1 % different coordinates between image and real word, flipping
subplot(121); imshow(flip(img_fixed)); title('original image')
subplot(122); imshow(flip(img_move)); title('shifted image')
elseif flag == 0
subplot(121); imshow(img_fixed); title('original image')
subplot(122); imshow(img_move); title('shifted image')
end
set(gca,'FontName',fontname,'FontSize',fontsize); set(gcf, 'position', get(0,'ScreenSize'));
saveas(gcf,'img/synthetic_image','png');
[x,y,u,v] = PIV_test(img_move,img_fixed);
F_u = scatteredInterpolant(x0,y0,offsetx,'linear','nearest');
u_real = F_u(x,y);
F_v = scatteredInterpolant(x0,y0,offsety,'linear','nearest');
v_real = F_v(x,y);
f = figure('Name','result');figure(f);
subplot(121); imshow(img_fixed); axis image; title('original image')
hold on; quiver(x,y,u,v,'g','AutoScaleFactor',1); hold off; title('PIV result')
subplot(122); imshow(img_fixed); axis image; title('shifted image')
hold on; quiver(x,y,u_real,v_real,'g','AutoScaleFactor',1); hold off; title('real result')
set(gca,'FontName',fontname,'FontSize',fontsize); set(gcf, 'position', get(0,'ScreenSize'));
saveas(gcf,'img/result','png');
f = figure('Name','Comparison between u');figure(f);
u = u(:); u_real = u_real(:);
idx = ~isnan(u) & u_real ~= 0;
u = u(idx); u_real = u_real(idx);
plot(1:length(u),u,1:length(u_real),u_real,':');
legend('PIV','Real'); xlabel('N'); ylabel('U'); title('Comparison between u')
set(gca,'FontName',fontname,'FontSize',fontsize); set(gcf, 'position', get(0,'ScreenSize'));
saveas(gcf,'img/result_comparison','png');
% rotate effect
f = figure('Name','original image rotate'); figure(f)
img_fixed_rot = imrotate(img_fixed,angle,'loose');
img_move_rot = imrotate(img_move,angle,'loose');
subplot(131); imshow(img_fixed_rot)
subplot(132); imshow(img_move_rot)
subplot(133); imshow(img_fixed_rot)
[x,y,u,v] = PIV_test(img_move_rot,img_fixed_rot);
hold on; quiver(x,y,u,v,'g','AutoScaleFactor',1); hold off; title('PIV result')
set(gcf, 'position', get(0,'ScreenSize'))
saveas(gcf,'img/synthetic_image_rot','png');
fprintf('\n\n');
function [I0, I1, d] = I_d(num,z_move,level,dp,ddp,z0)
%I_DISTRI generate intensity distribution in z direction and diameter distribution
% the position of Z direction
Z0_pre=randn(num,1); % normal distributed sheet intensity
Z1_pre=randn(num,1); % normal distributed sheet intensity
Z0=Z0_pre*(z_move/200+0.5)+Z1_pre*(1-(z_move/200+0.5));
Z1=Z1_pre*(z_move/200+0.5)+Z0_pre*(1-(z_move/200+0.5));
I0=level*exp(-8*Z0.^2./z0^2); % the factor I0 is a function of the particle’s position Z, within the light sheet
I0(I0>level)=level; % uint16, 2^16-1
I0(I0<0)=0;
I1=level*exp(-8*Z1.^2./z0^2);
I1(I1>level)=level;
I1(I1<0)=0;
% particle diameter distribution
d=randn(num,1)/2;
d=dp+d*ddp;
d(d<0)=0;
end
function [xlimit1, xlimit2, ylimit1, ylimit2] = cal_extent(num,x0,y0,d,sizex,sizey,offsetx,offsety)
%CAL_EXTENT calculate particle extents for images
if nargin == 6
offsetx = zeros(num,1);
offsety = offsetx;
end
xlimit1=zeros(num,1);
xlimit2=xlimit1;
ylimit1=xlimit1;
ylimit2=xlimit1;
for n=1:num
xlimit1(n)=floor(x0(n)-d(n)/2-offsetx(n)); % x min particle extent image2
xlimit2(n)=ceil(x0(n)+d(n)/2-offsetx(n)); % x max particle extent image2
ylimit1(n)=floor(y0(n)-d(n)/2-offsety(n)); % y min particle extent image2
ylimit2(n)=ceil(y0(n)+d(n)/2-offsety(n)); % y max particle extent image2
end
xlimit1(xlimit1<1)=1;
xlimit2(xlimit2>sizex)=sizex;
ylimit1(ylimit1<1)=1;
ylimit2(ylimit2>sizey)=sizey;
end
function [x,y,u,v] = PIV_test(img_fixed,img_move)
%PIV_TEST to test whether the synthetic images are correct or not
disp('Performing PIV analysis with deforming windows and 4 passes...')
% Standard PIV Settings
s = cell(10,2); % To make it more readable, let's create a "settings table"
% Parameter % Setting % Options
s{1,1}= 'Int. area 1'; s{1,2}=64; % window size of first pass
s{2,1}= 'Step size 1'; s{2,2}=s{1,2}/2; % step of first pass
s{3,1}= 'Subpix. finder'; s{3,2}=1; % 1 = 3point Gauss, 2 = 2D Gauss
s{4,1}= 'Mask'; s{4,2}=[]; % If needed, generate via: imagesc(image); [temp,Mask{1,1},Mask{1,2}]=roipoly;
s{5,1}= 'ROI'; s{5,2}=[]; % Region of interest: [x,y,width,height] in pixels, may be left empty
s{6,1}= 'Nr. of passes'; s{6,2}=4; % 1-4 nr. of passes
s{7,1}= 'Int. area 2'; s{7,2}=32; % second pass window size
s{8,1}= 'Int. area 3'; s{8,2}=16; % third pass window size
s{9,1}= 'Int. area 4'; s{9,2}=16; % fourth pass window size
s{10,1}='Window deformation'; s{10,2}='*spline'; % '*spline' is more accurate, but slower
s{11,1}='Repeated Correlation'; s{11,2}=0; % 0 or 1 : Repeat the correlation four times and multiply the correlation matrices.
s{12,1}='Disable Autocorrelation'; s{12,2}=0; % 0 or 1 : Disable Autocorrelation in the first pass.
s{13,1}='Correlation style'; s{13,2}=0; % 0 or 1 : Use circular correlation (0) or linear correlation (1).
% Standard image preprocessing settings
p = cell(8,1);
% Parameter % Setting % Options
p{1,1}= 'ROI'; p{1,2}=s{5,2}; % same as in PIV settings
p{2,1}= 'CLAHE'; p{2,2}=1; % 1 = enable CLAHE (contrast enhancement), 0 = disable
p{3,1}= 'CLAHE tile number'; p{3,2}=[8 8]; % CLAHE window size
p{4,1}= 'Highpass'; p{4,2}=0; % 1 = enable highpass, 0 = disable
p{5,1}= 'Highpass size'; p{5,2}=15; % highpass size
p{6,1}= 'Clipping'; p{6,2}=1; % 1 = enable clipping, 0 = disable
p{7,1}= 'Wiener'; p{7,2}=0; % 1 = enable Wiener2 adaptive denaoise filter, 0 = disable
p{8,1}= 'Wiener size'; p{8,2}=3; % Wiener2 window size
p{9,1}= 'Minimum intensity'; p{9,2}=0.0; % Minimum intensity of input image (0 = no change)
p{10,1}='Maximum intensity'; p{10,2}=1.0; % Maximum intensity on input image (1 = no change)
disp('Performing PIV analysis with deforming windows and 4 passes...')
img_move = preproc_PIV (img_move,p{1,2},p{2,2},p{3,2},p{4,2},p{5,2},p{6,2},p{7,2},p{8,2},p{9,2},p{10,2});
img_fixed = preproc_PIV (img_fixed,p{1,2},p{2,2},p{3,2},p{4,2},p{5,2},p{6,2},p{7,2},p{8,2},p{9,2},p{10,2});
[x,y,u,v,~] = FFT_multi (img_fixed,img_move,s{1,2},s{2,2},s{3,2},s{4,2},s{5,2},s{6,2},s{7,2},s{8,2},s{9,2},s{10,2},s{11,2},s{12,2},s{13,2});
% Remove less reliable values at the borders of the analysis
u(:,1)=[];u(:,end)=[];u(1,:)=[];u(end,:)=[];
v(:,1)=[];v(:,end)=[];v(1,:)=[];v(end,:)=[];
x(:,1)=[];x(:,end)=[];x(1,:)=[];x(end,:)=[];
y(:,1)=[];y(:,end)=[];y(1,:)=[];y(end,:)=[];
end