Skip to content

Latest commit

 

History

History
63 lines (54 loc) · 2.48 KB

README.md

File metadata and controls

63 lines (54 loc) · 2.48 KB

Simultaneous Speech Translation

Code base for simultaneous speech translation experiments. It is based on fairseq.

Implemented

Encoder

Streaming Models

Setup

  1. Install fairseq
git clone https://github.com/pytorch/fairseq.git
cd fairseq
git checkout 4a7835b
python setup.py build_ext --inplace
pip install .
  1. (Optional) Install apex for faster mixed precision (fp16) training.
  2. Install dependencies
pip install -r requirements.txt
  1. Update submodules
git submodule update --init --recursive

Pre-trained model

ASR model with Emformer encoder and Transformer decoder. Pre-trained with joint CTC cross-entropy loss.

MuST-C (WER) en-de (V2) en-es
dev 9.65 14.44
tst-COMMON 12.85 14.02
model download download
vocab download download

Sequence-level Knowledge Distillation

MuST-C (BLEU) en-de (V2)
valid 31.76
distillation download
vocab download

Citation

Please consider citing our paper:

@inproceedings{chang22f_interspeech,
  author={Chih-Chiang Chang and Hung-yi Lee},
  title={{Exploring Continuous Integrate-and-Fire for Adaptive Simultaneous Speech Translation}},
  year=2022,
  booktitle={Proc. Interspeech 2022},
  pages={5175--5179},
  doi={10.21437/Interspeech.2022-10627}
}