-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
123 lines (96 loc) · 4.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
"""
Miscellaneous functions for the main script.
Giancarlo Paoletti
Copyright 2021 Giancarlo Paoletti ([email protected])
Please, email me if you have any question.
Disclaimer:
The software is provided "as is", without warranty of any kind, express or
implied, including but not limited to the warranties of merchantability,
fitness for a particular purpose and noninfringement.
In no event shall the authors, PAVIS or IIT be liable for any claim, damages
or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use or other
dealings in the software.
LICENSE:
This project is licensed under the terms of the MIT license.
This project incorporates material from the projects listed below
(collectively, "Third Party Code").
This Third Party Code is licensed to you under their original license terms.
We reserves all other rights not expressly granted, whether by implication,
estoppel or otherwise.
Copyright (c) 2021 Giancarlo Paoletti, Jacopo Cavazza, Cigdem Beyan and
Alessio Del Bue
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.
References
[1] Giancarlo Paoletti, Jacopo Cavazza, Cigdem Beyan and Alessio Del Bue (2021).
Unsupervised Human Action Recognition with Skeletal Graph Laplacian and Self-Supervised Viewpoints Invariance
British Machine Vision Conference (BMVC).
"""
import numpy
import torch
import argparse
def argument_parser():
parser = argparse.ArgumentParser()
# Training settings
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--num-workers', type=int, default=0)
# Model settings
parser.add_argument('--layers', type=int, nargs='+', default=[64, 128, 256])
parser.add_argument('--ls', type=int, default=2048)
parser.add_argument('--SSVI-penalty', type=float, default=1e-3)
# Path and account settings
parser.add_argument('--data-path', type=str, default='./dataset')
parser.add_argument('--wandb-user', type=str, default='your_wandb_username')
# Ablation settings
parser.add_argument('--split', type=str, default='xsub60',
choices=['xsub60', 'xview60', 'xsub120', 'xset120'])
parser.add_argument('--method', type=str, default='AE_L',
choices=['AE', 'AE_L', 'GRAE_L'])
args = parser.parse_args()
return args
def log(s, nl=True):
print(s, end='\n' if nl else '')
def random_seed(seed):
numpy.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
class Metric(object):
def __init__(self, name):
self.name = name
self.sum = torch.tensor(0.)
self.n = torch.tensor(0.)
def update(self, val):
self.sum += val.detach().cpu()
self.n += 1
@property
def avg(self):
return self.sum / self.n
class NTUDatasetList(torch.utils.data.Dataset):
def __init__(self, tensors):
assert all(len(tensors[0]) == len(tensor) for tensor in tensors)
self.tensors = tensors
def __getitem__(self, index):
x = self.tensors[0][index]
y = self.tensors[1][index]
return x, y
def __len__(self):
return len(self.tensors[0])