-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPythagoras_tree.m
272 lines (259 loc) · 9.84 KB
/
Pythagoras_tree.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
function M = Pythagoras_tree(m,n,Colormap)
% function M = Pythagoras_tree(m,n,Colormap)
% Compute Pythagoras_tree
% The Pythagoras Tree is a plane fractal constructed from squares.
% It is named after Pythagoras because each triple of touching squares
% encloses a right triangle, in a configuration traditionally used to
% depict the Pythagorean theorem.
% http://en.wikipedia.org/wiki/Pythagoras_tree
%
% Input :
% - m ( double m> 0) is the relative length of one of the side
% right-angled triangle. The second side of the right-angle is
% taken to be one.
% To have a symmetric tree, m has to be 1.
% - n ( integer ) is the level of recursion.
% The number of elements of tree is equal to 2^(n+1)-1.
% A reasonable number for n is 10.
% - Colormap: String used to generate color of the different levels
% of the tree.
% All these arguments are optional: the function can run with
% argument.
% Output :
% - Matrix M: Pythagoras tree is stored in a matrix M.
% This matrix has 5 columns.
% Each row corresponds to the coordinate of each square of the tree
% The two first columns give the bottom-left position of each
% square. The third column corresponds to the orientation angle of
% each square. The fourth column gives the size of each square. The
% fifth column specifies the level of recursion of each square.
% The first row corresponds to the root of the tree. It is always
% the same
% M(1,:) = [0 -1 0 1 1];
% The leaf located at row i will give 2 leaves located at 2*i and
% 2*i+1.
% - A svg file giving a vectorial display of the tree. The name of
% file is generated from the parameter m,n,Colormap. The file is
% stored in the current folder.
%
% 2010 02 29
% Guillaume Jacquenot
% guillaume dot jacquenot at gmail dot com
%% Check inputs
narg = nargin;
if narg <= 2
% Colormap = 'jet';
Colormap = 'summer';
if narg <= 1
n = 12; % Recursion level
if nargin == 0
m = 0.8;
end
end
end
if m <= 0
error([mfilename ':e0'],'Length of m has to be greater than zero');
end
if rem(n,1)~=0
error([mfilename ':e0'],'The number of level has to be integer');
end
if ~iscolormap(Colormap)
error([mfilename ':e1'],'Input colormap is not valid');
end
%% Compute constants
d = sqrt(1+m^2); %
c1 = 1/d; % Normalized length 1
c2 = m/d; % Normalized length 2
T = [0 1/(1+m^2);1 1+m/(1+m^2)]; % Translation pattern
alpha1 = atan2(m,1); % Defines the first rotation angle
alpha2 = alpha1-pi/2; % Defines the second rotation angle
pi2 = 2*pi; % Defines pi2
nEle = 2^(n+1)-1; % Number of elements (square)
M = zeros(nEle,5); % Matrice containing the tree
M(1,:) = [0 -1 0 1 1]; % Initialization of the tree
%% Compute the level of each square contained in the resulting matrix
Offset = 0;
for i = 0:n
tmp = 2^i;
M(Offset+(1:tmp),5) = i;
Offset = Offset + tmp;
end
%% Compute the position and size of each square wrt its parent
for i = 2:2:(nEle-1)
j = i/2;
mT = M(j,4) * mat_rot(M(j,3)) * T;
Tx = mT(1,:) + M(j,1);
Ty = mT(2,:) + M(j,2);
theta1 = rem(M(j,3)+alpha1,pi2);
theta2 = rem(M(j,3)+alpha2,pi2);
M(i ,1:4) = [Tx(1) Ty(1) theta1 M(j,4)*c1];
M(i+1,1:4) = [Tx(2) Ty(2) theta2 M(j,4)*c2];
end
%% Display the tree
Pythagor_tree_plot(M,n);
%% Write results to an SVG file
Pythagor_tree_write2svg(m,n,Colormap,M);
function Pythagor_tree_write2svg(m,n,Colormap,M)
% Determine the bounding box of the tree with an offset
% Display_metadata = false;
Display_metadata = true;
nEle = size(M,1);
r2 = sqrt(2);
LOffset = M(nEle,4) + 0.1;
min_x = min(M(:,1)-r2*M(:,4)) - LOffset;
max_x = max(M(:,1)+r2*M(:,4)) + LOffset;
min_y = min(M(:,2) ) - LOffset; % -r2*M(:,4)
max_y = max(M(:,2)+r2*M(:,4)) + LOffset;
% Compute the color of tree
ColorM = zeros(n+1,3);
eval(['ColorM = flipud(' Colormap '(n+1));']);
co = 100;
Wfig = ceil(co*(max_x-min_x));
Hfig = ceil(co*(max_y-min_y));
filename = ['Pythagoras_tree_1_' strrep(num2str(m),'.','_') '_'...
num2str(n) '_' Colormap '.svg'];
fid = fopen(filename, 'wt');
fprintf(fid,'<?xml version="1.0" encoding="UTF-8" standalone="no"?>\n');
if ~Display_metadata
fprintf(fid,'<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"\n');
fprintf(fid,' "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">\n');
end
fprintf(fid,'<svg width="%d" height="%d" version="1.1"\n',Wfig,Hfig); %
% fprintf(fid,['<svg width="12cm" height="4cm" version="1.1"\n']); % Wfig,
% fprintf(fid,['<svg width="15cm" height="10cm" '...
% 'viewBox="0 0 %d %d" version="1.1"\n'],...
% Wfig,Hfig);
if Display_metadata
fprintf(fid,'\txmlns:dc="http://purl.org/dc/elements/1.1/"\n');
fprintf(fid,'\txmlns:cc="http://creativecommons.org/ns#"\n');
fprintf(fid,['\txmlns:rdf="http://www.w3.org/1999/02/22'...
'-rdf-syntax-ns#"\n']);
end
fprintf(fid,'\txmlns:svg="http://www.w3.org/2000/svg"\n');
fprintf(fid,'\txmlns="http://www.w3.org/2000/svg"\n');
fprintf(fid,'\txmlns:xlink="http://www.w3.org/1999/xlink">\n');
if Display_metadata
fprintf(fid,'\t<title>Pythagoras tree</title>\n');
fprintf(fid,'\t<metadata>\n');
fprintf(fid,'\t\t<rdf:RDF>\n');
fprintf(fid,'\t\t\t<cc:Work\n');
fprintf(fid,'\t\t\t\trdf:about="">\n');
fprintf(fid,'\t\t\t\t<dc:format>image/svg+xml</dc:format>\n');
fprintf(fid,'\t\t\t\t<dc:type\n');
fprintf(fid,'\t\t\t\t\trdf:resource="http://purl.org/dc/dcmitype/StillImage" />\n');
fprintf(fid,'\t\t\t\t<dc:title>Pythagoras tree</dc:title>\n');
fprintf(fid,'\t\t\t\t<dc:creator>\n');
fprintf(fid,'\t\t\t\t\t<cc:Agent>\n');
fprintf(fid,'\t\t\t\t\t\t<dc:title>Guillaume Jacquenot</dc:title>\n');
fprintf(fid,'\t\t\t\t\t</cc:Agent>\n');
fprintf(fid,'\t\t\t\t</dc:creator>\n');
fprintf(fid,'\t\t\t\t<cc:license\n');
fprintf(fid,'\t\t\t\t\t\trdf:resource="http://creativecommons.org/licenses/by-nc-sa/3.0/" />\n');
fprintf(fid,'\t\t\t</cc:Work>\n');
fprintf(fid,'\t\t\t<cc:License\n');
fprintf(fid,'\t\t\t\trdf:about="http://creativecommons.org/licenses/by-nc-sa/3.0/">\n');
fprintf(fid,'\t\t\t\t<cc:permits\n');
fprintf(fid,'\t\t\t\t\trdf:resource="http://creativecommons.org/ns#Reproduction" />\n');
fprintf(fid,'\t\t\t\t<cc:permits\n');
fprintf(fid,'\t\t\t\t\trdf:resource="http://creativecommons.org/ns#Reproduction" />\n');
fprintf(fid,'\t\t\t\t<cc:permits\n');
fprintf(fid,'\t\t\t\t\trdf:resource="http://creativecommons.org/ns#Distribution" />\n');
fprintf(fid,'\t\t\t\t<cc:requires\n');
fprintf(fid,'\t\t\t\t\trdf:resource="http://creativecommons.org/ns#Notice" />\n');
fprintf(fid,'\t\t\t\t<cc:requires\n');
fprintf(fid,'\t\t\t\t\trdf:resource="http://creativecommons.org/ns#Attribution" />\n');
fprintf(fid,'\t\t\t\t<cc:prohibits\n');
fprintf(fid,'\t\t\t\t\trdf:resource="http://creativecommons.org/ns#CommercialUse" />\n');
fprintf(fid,'\t\t\t\t<cc:permits\n');
fprintf(fid,'\t\t\t\t\trdf:resource="http://creativecommons.org/ns#DerivativeWorks" />\n');
fprintf(fid,'\t\t\t\t<cc:requires\n');
fprintf(fid,'\t\t\t\t\trdf:resource="http://creativecommons.org/ns#ShareAlike" />\n');
fprintf(fid,'\t\t\t</cc:License>\n');
fprintf(fid,'\t\t</rdf:RDF>\n');
fprintf(fid,'\t</metadata>\n');
end
fprintf(fid,'\t<defs>\n');
fprintf(fid,'\t\t<rect width="%d" height="%d" \n',co,co);
fprintf(fid,'\t\t\tx="0" y="0"\n');
fprintf(fid,'\t\t\tstyle="fill-opacity:1;stroke:#00d900;stroke-opacity:1"\n');
fprintf(fid,'\t\t\tid="squa"\n');
fprintf(fid,'\t\t/> \n');
fprintf(fid,'\t</defs>\n');
fprintf(fid,'\t<g transform="translate(%d %d) rotate(180) " >\n',...
round(co*max_x),round(co*max_y));
for i = 0:n
fprintf(fid,'\t\t<g style="fill:#%s;" >\n',...
generate_color_hexadecimal(ColorM(i+1,:)));
Offset = 2^i-1;
for j = 1:2^i
k = j + Offset;
fprintf(fid,['\t\t\t<use xlink:href="#squa" ',...
'transform="translate(%+010.5f %+010.5f)'...
' rotate(%+010.5f) scale(%8.6f)" />\n'],...
co*M(k,1),co*M(k,2),M(k,3)*180/pi,M(k,4));
end
fprintf(fid,'\t\t</g>\n');
end
fprintf(fid,'\t</g>\n');
fprintf(fid,'</svg>\n');
fclose(fid);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function M = mat_rot(x)
c = cos(x);
s = sin(x);
M=[c -s; s c];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function H = Pythagor_tree_plot(D,ColorM)
if numel(ColorM) == 1
ColorM = flipud(summer(ColorM+1));
end
H = figure('color','w');
hold on
axis equal
axis off
for i=1:size(D,1)
cx = D(i,1);
cy = D(i,2);
theta = D(i,3);
si = D(i,4);
M = mat_rot(theta);
x = si*[0 1 1 0 0];
y = si*[0 0 1 1 0];
pts = M*[x;y];
fill(cx+pts(1,:),cy+pts(2,:),ColorM(D(i,5)+1,:));
% plot(cx+pts(1,1:2),cy+pts(2,1:2),'r');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Scolor = generate_color_hexadecimal(color)
Scolor = '000000';
for i=1:3
c = dec2hex(round(255*color(i)));
if numel(c)==1
Scolor(2*(i-1)+1) = c;
else
Scolor(2*(i-1)+(1:2)) = c;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function res = iscolormap(cmap)
% This function returns true if 'cmap' is a valid colormap
LCmap = {...
'autumn'
'bone'
'colorcube'
'cool'
'copper'
'flag'
'gray'
'hot'
'hsv'
'jet'
'lines'
'pink'
'prism'
'spring'
'summer'
'white'
'winter'
};
res = ~isempty(strmatch(cmap,LCmap,'exact'));