-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgon_celeba_fourier.py
210 lines (160 loc) · 7.28 KB
/
gon_celeba_fourier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import torch
import torch.nn as nn
import torchvision
import numpy as np
import os
import argparse
from gon.dataset import ImageFolderDataset
class Swish(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x * torch.sigmoid(x)
class SirenLayer(nn.Module):
def __init__(self, in_f, out_f, w0=30, is_first=False, is_last=False):
super().__init__()
self.in_f = in_f
self.w0 = w0
self.linear = nn.Linear(in_f, out_f)
self.is_first = is_first
self.is_last = is_last
self.init_weights()
def init_weights(self):
b = 1 / \
self.in_f if self.is_first else np.sqrt(6 / self.in_f) / self.w0
with torch.no_grad():
self.linear.weight.uniform_(-b, b)
def forward(self, x):
x = self.linear(x)
return x if self.is_last else torch.sin(self.w0 * x)
def gon_model(dimensions):
first_layer = SirenLayer(dimensions[0], dimensions[1], is_first=True)
other_layers = []
for dim0, dim1 in zip(dimensions[1:-2], dimensions[2:-1]):
other_layers.append(SirenLayer(dim0, dim1))
final_layer = SirenLayer(dimensions[-2], dimensions[-1], is_last=True)
return nn.Sequential(first_layer, *other_layers, final_layer)
# helper functions
def get_mgrid(sidelen, dim=2):
tensors = tuple(dim * [torch.linspace(0, 1, steps=sidelen)])
mgrid = torch.stack(torch.meshgrid(*tensors), dim=-1)
mgrid = mgrid.reshape(-1, dim)
return mgrid
def cycle(iterable):
while True:
for x in iterable:
yield x
def slerp(a, b, t):
omega = torch.acos(
(a / torch.norm(a, dim=1, keepdim=True) * b / torch.norm(b, dim=1, keepdim=True)).sum(1)).unsqueeze(1)
res = (torch.sin((1.0 - t) * omega) / torch.sin(omega)) * a + (torch.sin(t * omega) / torch.sin(omega)) * b
return res
def slerp_batch(model, z, coords):
lz = z.data.clone().squeeze(1)
col_size = int(np.sqrt(z.size(0)))
src_z = lz.data[:col_size].repeat(col_size, 1)
z1, z2 = lz.data.split(lz.shape[0] // 2)
tgt_z = torch.cat([z2, z1])
tgt_z = tgt_z[:col_size].repeat(col_size, 1)
t = torch.linspace(0, 1, col_size).unsqueeze(1).repeat(1, col_size).contiguous().view(batch_size,
1).contiguous().to(device)
z_slerp = slerp(src_z, tgt_z, t)
z_slerp_rep = z_slerp.unsqueeze(1).repeat(1, coords.size(1), 1)
g_slerp = model(torch.cat((coords, z_slerp_rep), dim=-1))
return g_slerp
def gon_sample(model, recent_zs, coords):
zs = torch.cat(recent_zs, dim=0).squeeze(1).cpu().numpy()
mean = np.mean(zs, axis=0)
cov = np.cov(zs.T)
sample = np.random.multivariate_normal(mean, cov, size=batch_size)
sample = torch.tensor(sample).unsqueeze(1).repeat(1, coords.size(1), 1).to(device).float()
model_input = torch.cat((coords, sample), dim=-1)
return model(model_input)
def coor_mapping(x, B):
if B is None:
return x
else:
x_proj = (2. * np.pi * x) @ B.t()
return torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)
if __name__ == '__main__':
plot_dir = 'imgs'
weights_dir = "checkpoints"
os.makedirs(plot_dir, exist_ok=True)
os.makedirs(weights_dir, exist_ok=True)
# image data
dataset_path = '/workspace/data'
img_size = 64
n_channels = 3
img_coords = 2
# training info
lr = 1e-4
batch_size = 64
num_latent = 256
hidden_features = 256
mapping_size = 64
num_layers = 3
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
parser = argparse.ArgumentParser()
parser.add_argument("--pretrained_weights", type=str, help="if specified starts from checkpoint model")
parser.add_argument("--steps", type=int, help="Steps to train", default=50000)
parser.add_argument("--dataset_path", type=str, required=True, help="dataset path")
opt = parser.parse_args()
dataset = ImageFolderDataset(image_dir=opt.dataset_path, img_dim=(64, 64))
train_loader = torch.utils.data.DataLoader(dataset, shuffle=True, sampler=None, batch_size=batch_size,
drop_last=True)
train_iterator = iter(cycle(train_loader))
# define GON architecture, for example gon_shape = [34, 256, 256, 256, 256, 1]
gon_shape = [mapping_size + num_latent] + [hidden_features] * num_layers + [n_channels]
F = gon_model(gon_shape).to(device)
if opt.pretrained_weights:
F.load_state_dict(torch.load(opt.pretrained_weights, map_location=device), strict=False)
optim = torch.optim.Adam(lr=lr, params=F.parameters())
np.random.seed(47)
B_gauss = np.random.randn((mapping_size // 2, 2))
np.random.seed(None)
B_gauss = torch.tensor(B_gauss, device=device) * 5
# (B, H x W, 2)
c = torch.stack([get_mgrid(img_size, 2) for _ in range(batch_size)]).to(device) # coordinates
# (B, H x W, hidden_features)
c = coor_mapping(c, B_gauss)
print(f'> Number of parameters {len(torch.nn.utils.parameters_to_vector(F.parameters()))}')
recent_zs = []
for step in range(opt.steps):
# sample a batch of data
x = next(train_iterator)
x = x.to(device)
x = x.permute(0, 2, 3, 1).reshape(batch_size, -1, n_channels)
# compute the gradients of the inner loss with respect to zeros (gradient origin)
z = torch.randn(batch_size, 1, num_latent).to(device).requires_grad_()
z_rep = z.repeat(1, c.size(1), 1)
g = F(torch.cat((c, z_rep), dim=-1))
L_inner = ((g - x) ** 2).sum(1).mean()
z = z - torch.autograd.grad(L_inner, [z], create_graph=True, retain_graph=True)[0]
# now with z as our new latent points, optimise the data fitting loss
z_rep = z.repeat(1, c.size(1), 1)
g = F(torch.cat((c, z_rep), dim=-1))
L_outer = ((g - x) ** 2).sum(1).mean()
optim.zero_grad()
L_outer.backward()
optim.step()
# compute sampling statistics
recent_zs.append(z.detach())
recent_zs = recent_zs[-100:]
print(f"--[step: {step}]: loss: {L_outer.item()}")
if step % 100 == 0 and step > 0:
print(f"Step: {step} Loss: {L_outer.item():.3f}")
torch.save(F.state_dict(), f"checkpoints/gon_ckpt_%d_%.6f.pth" % (step, L_outer.item()))
# plot reconstructions
torchvision.utils.save_image(
torch.clamp(g, 0, 1).permute(0, 2, 1).reshape(-1, n_channels, img_size, img_size),
f'imgs/recon_{step}.png', nrow=int(np.sqrt(batch_size)), padding=0)
# plot interpolations
torchvision.utils.save_image(
torch.clamp(slerp_batch(F, z.data, c), 0, 1).permute(0, 2, 1).reshape(-1, n_channels, img_size,
img_size),
f'imgs/slerp_{step}.png', nrow=int(np.sqrt(batch_size)), padding=0)
# plot samples
torchvision.utils.save_image(
torch.clamp(gon_sample(F, recent_zs, c), 0, 1).permute(0, 2, 1).reshape(-1, n_channels, img_size,
img_size),
f'imgs/sample_{step}.png', nrow=int(np.sqrt(batch_size)), padding=0)