-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsurvey_analytics_library.py
149 lines (121 loc) · 5.13 KB
/
survey_analytics_library.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# imports
import pandas as pd
import re
# replace text with multiple replacements
def replace_text(string, dict_of_replacements):
'''
replace multiple substrings in a string with a dictionary of replacements
to be used if replacements are fixed and do not require regex as replace() is faster than re.sub()
for regex replacements use clean_text()
arguments:
string (str): string for replacement
dict_of_replacements (dict): dictionary of substring to replace and replacement
e.g. {'to replace this':'with this',...}
returns:
a string with substrings replaced
'''
# loop through dict
for key, value in dict_of_replacements.items():
# perform replacement
string = string.replace(key, value)
# return
return string
# clean text string
def clean_text(text_string, list_of_replacements, lowercase=True, ignorecase=False):
'''
clean text string
lower case string
regex sub user defined patterns with user defined replacements
arguments:
text_string (str): text string to clean
list_of_replacements (list): a list of tuples consisting of regex pattern and replacement value
e.g. [('[^a-z\s]+', ''), ...]
lowercase (bool): default to True, if True, convert text to lowercase
ignorecase (bool): default to False, if True, ignore case when applying re.sub()
returns:
a cleaned text string
'''
# check lowercase argument
if lowercase:
# lower case text string
clean_string = text_string.lower()
else:
# keep text as is
clean_string = text_string
if ignorecase:
# loop through each pattern and replacement
for pattern, replacement in list_of_replacements:
# replace defined pattern with defined replacement value
clean_string = re.sub(pattern, replacement, clean_string, flags=re.IGNORECASE)
else:
# loop through each pattern and replacement
for pattern, replacement in list_of_replacements:
# replace defined pattern with defined replacement value
clean_string = re.sub(pattern, replacement, clean_string)
# return
return clean_string
# convert transformer model zero shot classification prediction into dataframe
def convert_zero_shot_classification_output_to_dataframe(model_output):
'''
convert zero shot classification output to dataframe
model's prediction is a list dictionaries
e.g. each prediction consists of the sequence being predicted, the user defined labels,
and the respective scores.
[
{'sequence': 'the organisation is generally...',
'labels': ['rewards', 'resourcing', 'leadership'],
'scores': [0.905086100101471, 0.06712279468774796, 0.027791114524006844]},
...
]
the function pairs the label and scores and stores it as a dataframe
it also identifies the label with the highest score
arguments:
model_output (list): output from transformer.pipeline(task='zero-shot-classification')
returns:
a dataframe of label and scores for each prediction
'''
# store results as dataframe
results = pd.DataFrame(model_output)
# zip labels and scores as dictionary
results['labels_scores'] = results.apply(lambda x: dict(zip(x['labels'], x['scores'])), axis=1)
# convert labels_scores to dataframe
labels_scores = pd.json_normalize(results['labels_scores'])
# get label of maximum score as new column
labels_scores['label'] = labels_scores.idxmax(axis=1)
# get score of maximum score as new column
labels_scores['score'] = labels_scores.max(axis=1)
# concat labels_scores to results
results = pd.concat([results, labels_scores], axis=1)
# drop unused columns
results = results.drop(['labels', 'scores'], axis=1)
# return
return results
# convert transformer model sentiment classification prediction into dataframe
def convert_sentiment_classification_output_to_dataframe(text_input, model_output):
'''
convert sentiment classification output into a dataframe
the model used distilbert-base-uncased-finetuned-sst-2-english outputs a list of lists with two dictionaries,
within each dictionary is a label negative or postive and the respective score
[
[
{'label': 'NEGATIVE', 'score': 0.18449656665325165},
{'label': 'POSITIVE', 'score': 0.8155034780502319}
],
...
]
the scores sum up to 1, and we extract only the positive score in this function,
append the scores to the model's input and return a dataframe
arguments:
text_input (list): a list of sequences that is input for the model
model_output (list): a list of labels and scores
return:
a dataframe of sequences and sentiment score
'''
# store model positive scores as dataframe
results = pd.DataFrame(model_output)[[1]]
# get score from column
results = results[1].apply(lambda x: x.get('score'))
# store input sequences and scores as dataframe
results = pd.DataFrame({'sequence':text_input, 'score':results})
# return
return results