-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdatasets.py
445 lines (396 loc) · 15.6 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
#!/usr/bin/env python
# usage: datasets.py
__author__ = "Susheel Varma"
__copyright__ = "Copyright (c) 2019-2020 Susheel Varma All Rights Reserved."
__email__ = "[email protected]"
__license__ = "Apache 2"
import sys
import csv
import json
import urllib
import codecs
import uuid
import itertools
import requests
from pprint import pprint
API_BASE_URL="https://metadata-catalogue.org/hdruk/api"
DATA_MODELS = API_BASE_URL + "/dataModels"
DATA_MODEL_ID = API_BASE_URL + "/facets/{MODEL_ID}/profile/uk.ac.hdrukgateway/HdrUkProfilePluginService"
DATA_MODEL_METADATA = API_BASE_URL + "/facets/{MODEL_ID}/metadata?all=true"
DATA_MODEL_CLASSES = DATA_MODELS + "/{MODEL_ID}/dataClasses?all=true"
DATA_MODEL_CLASS = DATA_MODELS + "/{MODEL_ID}/dataClasses/{CLASS_ID}"
DATA_MODEL_CLASSES_ELEMENTS = DATA_MODELS + "/{MODEL_ID}/dataClasses/{CLASS_ID}/dataElements?all=true"
DATA_MODEL_SEMANTIC_LINKS = API_BASE_URL + "/catalogueItems/{MODEL_ID}/semanticLinks?all=true"
DATA_MODEL_PIDS = "https://api.www.healthdatagateway.org/api/v1/datasets/pidList"
def request_url(URL):
"""HTTP GET request and load into data_model"""
print(URL)
r = requests.get(URL)
if r.status_code == requests.codes.unauthorized:
return {}
elif r.status_code == requests.codes.not_found:
return {}
elif r.status_code != requests.codes.ok:
r.raise_for_status()
return json.loads(r.text)
def read_json(filename):
with open(filename, 'r') as file:
return json.load(file)
def export_csv(data, filename, header=None):
if header is None:
header = ['id', 'name', 'publisher', 'description', 'author', 'metadata_version']
with open(filename, 'w') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=header, delimiter=',', quotechar='\"')
writer.writeheader()
writer.writerows(data)
def export_json(data, filename, indent=2):
with open(filename, 'w') as jsonfile:
json.dump(data, jsonfile, indent=indent)
def get_data_elements(data_model_id, data_class_id):
print("Processing Data Elements...")
data = []
URL = DATA_MODEL_CLASSES_ELEMENTS.format(MODEL_ID=data_model_id, CLASS_ID=data_class_id)
de_row = request_url(URL)
data_element_count = int(de_row.get('count', 0))
if data_element_count > 0:
for d in de_row['items']:
print("Processing Data Element: ", d['id'], " : ", d['label'])
d.pop('domainType', None)
d['name'] = d.pop('label', None)
d.pop('breadcrumbs', None)
d.pop('dataModel', None)
d.pop('dataClass', None)
d['dataType'] = d['dataType']['label']
data.append(d)
return data
def get_data_classes(data_model_id):
print("Processing Data Classes...")
data = {}
URL = DATA_MODEL_CLASSES.format(MODEL_ID=data_model_id)
dm_row = request_url(URL)
data_model_count = int(dm_row.get('count', 0))
data['dataClassesCount'] = data_model_count
data_classes = []
if data_model_count > 0:
for d in dm_row['items']:
print("Processing Data Class: ", d['id'], " : ", d['label'])
URL = DATA_MODEL_CLASS.format(MODEL_ID=data_model_id, CLASS_ID=d['id'])
dc_row = request_url(URL)
# del dc_row['id']
dc_row.pop('domainType', None)
dc_row['name'] = dc_row.pop('label', None)
dc_row.pop('breadcrumbs', None)
dc_row.pop('dataModel', None)
dc_row.pop('editable', None)
dc_row.pop('lastUpdated', None)
# Collecting DataElements
data_elements = get_data_elements(data_model_id, d['id'])
dc_row['dataElementsCount'] = len(data_elements)
dc_row['dataElements'] = data_elements
data_classes.append(dc_row)
data['dataClasses'] = data_classes
return data
def get_semantic_links(data_model_id, data=None, seen_ids=[], latest=None):
print("Processing Semantic Links...", data_model_id)
if data is None:
data = {}
URL = DATA_MODEL_SEMANTIC_LINKS.format(MODEL_ID=data_model_id)
ret = request_url(URL)
if ret.get('count', None) is None:
return { 'revisions': data }
if ret['count'] > 0:
for links in ret['items']:
src_ver = links['source']['documentationVersion']
src_id = links['source']['id']
data[src_ver] = src_id
tar_ver = links['target']['documentationVersion']
tar_id = links['target']['id']
data[tar_ver] = tar_id
seen_ids.append(data_model_id)
revision_ids = list(set(list(data.values())) - set(seen_ids))
for id in revision_ids:
new_data = get_semantic_links(id, data, seen_ids, latest)
data.update(new_data['revisions'])
data['latest'] = latest
return { 'revisions': data }
def fix_dates(revisions):
print("Fixing Dates...")
from datetime import datetime
data = {}
last_updated = []
date_finalised = []
for version, id in revisions.items():
URL = DATA_MODELS + "/" + id
ret = request_url(URL)
if ret.get("lastUpdated", None) is not None:
try:
lu = datetime.strptime(ret["lastUpdated"], "%Y-%m-%dT%H:%M:%S.%fZ")
except ValueError:
lu = datetime.strptime(ret["lastUpdated"], "%Y-%m-%dT%H:%M:%SZ")
else:
lu = None
if ret.get("dateFinalised", None) is not None:
try:
du = datetime.strptime(ret["dateFinalised"], "%Y-%m-%dT%H:%M:%S.%fZ")
except ValueError:
du = datetime.strptime(ret["dateFinalised"], "%Y-%m-%dT%H:%M:%SZ")
else:
du = lu
if lu is not None: last_updated.append(lu)
if du is not None: date_finalised.append(du)
if len(last_updated) > 0:
data['modified'] = max(last_updated).strftime("%Y-%m-%dT%H:%M:%SZ")
else:
data['modified'] = None
if len(date_finalised) > 0:
data['issued'] = min(date_finalised).strftime("%Y-%m-%dT%H:%M:%SZ")
else:
data['issued'] = None
return data
def get_structural_metadata_counts(data_classes):
DATA = {
'structuralMetadata.dataClassesCount': len(data_classes),
'structuralMetadata.tableName': len([dc['name'] for dc in data_classes if dc.get('name', None) is not None]),
'structuralMetadata.tableDescription': len([dc['description'] for dc in data_classes if dc.get('description', None) is not None]),
'structuralMetadata.dataElementsCount': sum([int(dc['dataElementsCount']) for dc in data_classes if dc.get('dataElementsCount', None) is not None]),
'structuralMetadata.columnName': 0,
'structuralMetadata.columnDescription': 0,
'structuralMetadata.dataType': 0,
'structuralMetadata.sensitive': 0
}
for dc in data_classes:
DATA['structuralMetadata.columnName'] += len([de['name'] for de in dc.get('dataElements') if de.get('name', None) is not None])
DATA['structuralMetadata.columnDescription'] += len([de['description'] for de in dc.get('dataElements') if de.get('description', None) is not None])
DATA['structuralMetadata.dataType'] += len([de['dataType'] for de in dc.get('dataElements') if de.get('dataType', None) is not None])
# DATA['structuralMetadata.sensitive'] += len([de['sensitive'] for de in dc.get('dataElements') if de.get('sensitive', None) is not None])
return DATA
def process_data_models(data_models_list):
print("Processing Data Models...")
headers = []
data = {}
data['count'] = data_models_list['count']
data_models = []
data_models_v2 = []
# Collect PIDs for Datasets
pid_list = request_url(DATA_MODEL_PIDS)
export_json(pid_list, "pids.json")
# pid_list = read_json("pids.json")
i = 0
for d in data_models_list['items']:
i += 1
print("{}/{}: Processing Data Model: {}".format(i, data['count'], d['id']))
row = {
"@schema": {
"type": "Dataset",
"version": "2.0.1",
"url": "https://raw.githubusercontent.com/HDRUK/schemata/master/schema/dataset/latest/dataset.schema.json"
}
}
# Get PID for Dataset
for p in pid_list['data']:
if d['id'] in p['datasetIds']:
row['pid'] = p['pid']
# Collect Data Model
URL = DATA_MODELS + "/{ID}".format(ID=d['id'])
dm = request_url(URL)
row.update(dm)
row['version'] = row.pop('documentationVersion', None)
# Collect HDR UK Profile information
URL = DATA_MODEL_ID.format(MODEL_ID=d['id'])
dm = request_url(URL)
row.update(dm)
row_v2 = {
"@schema": {
"type": "Dataset",
"version": "2.0.1",
"url": "https://raw.githubusercontent.com/HDRUK/schemata/master/schema/dataset/latest/dataset.schema.json"
},
"pid": row.get('pid', None),
"id": row['id'],
"identifier": "https://web.www.healthdatagateway.org/dataset/" + dm['id'],
"version": row.get("version", None),
"lastUpdated": row.get('lastUpdated', None),
"dateFinalised": row.get('dateFinalised', None),
"summary": {
"title": row.get('label', None)
},
"documentation": {
"description": row.get('description', None)
}
}
# Collect SemanticLinks
semantic_links = get_semantic_links(d['id'], latest=d['id'])
row.update(semantic_links)
row_v2.update(semantic_links)
# Fix Dates
dates = fix_dates(row['revisions'])
row.update(dates)
row_v2.update(dates)
row.pop('lastUpdated', None)
row.pop('dateFinalised', None)
row_v2.pop('lastUpdated', None)
row_v2.pop('dateFinalised', None)
# Collect HDR UK V2 Metadata Profile information
metadata_v2 = get_v2_metadata(row['id'])
row_v2 = generate_nested_dict(row_v2, metadata_v2)
# Collecting Data Classes
data_classes = get_data_classes(d['id'])
row.update(data_classes)
data_classes = data_classes['dataClasses']
structuralMetadataCount = get_structural_metadata_counts(data_classes)
row_v2.update({
"structuralMetadata": {
"structuralMetadataCount": structuralMetadataCount,
"dataClasses": data_classes
}
})
data_models.append(row)
if len(metadata_v2) > 0:
data_models_v2.append(row_v2)
data['dataModels'] = data_models
data['dataModelsV2'] = data_models_v2
data['count_v1'] = len(data_models)
data['count_v2'] = len(data_models_v2)
print("Retrieved ", data['count_v1'], "V1 records & ", data['count_v2'], " V2 records.")
return data
def get_leaves(item, key=None):
if isinstance(item, dict):
leaves = {}
for i in item.keys():
leaves.update(get_leaves(item[i], i))
return leaves
elif isinstance(item, list):
leaves = {}
for i in item:
leaves.update(get_leaves(i, key))
return leaves
else:
return {key : item}
def export_csv_tables(data, filename):
# First parse all entries to get the complete fieldname list
fieldnames = set()
for entry in data['dataModels']:
fieldnames.update(get_leaves(entry).keys())
with open(filename, 'w', newline='') as csv_file:
csv_output = csv.DictWriter(csv_file, fieldnames=sorted(fieldnames), delimiter=',', quotechar='\"')
csv_output.writeheader()
csv_output.writerows(get_leaves(entry) for entry in data['dataModels'])
def format_csv_tables(data):
tables = {
'dataModels': {'data': [], 'headers': []},
'dataClasses': {'data': [], 'headers': []},
'dataElements': {'data': [], 'headers': []},
}
for dm in data['dataModels']:
for dc in dm['structuralMetadata'].get('dataClasses', []):
for de in dc.get('dataElements', []):
# de['dataTypeLabel'] = de['dataType']['label']
de['dataType'] = de.get('dataType', None)
de['dataModel'] = dm.get('id', None)
de['dataClass'] = dc.get('id', None)
# Append dataElement to tables
tables['dataElements']['data'].append(de)
tables['dataElements']['headers'].extend(de.keys())
# Add dataElement IDs to dataClass
data_elements = [de['id'] for de in dc['dataElements']]
dc['dataElements'] = ", ".join(data_elements)
# Append dataClass to tables
tables['dataClasses']['data'].append(dc)
tables['dataClasses']['headers'].extend(dc.keys())
# Add dataClasses to dataModel
data_classes = [dc.get('id', None) for dc in dm['structuralMetadata'].get('dataClasses', [])]
data_classes = [dc for dc in data_classes if dc is not None]
data['dataClasses'] = ", ".join(data_classes)
tables['dataModels']['data'].append(dm)
tables['dataModels']['headers'].extend(dm.keys())
tables['dataModels']['headers'] = list(set(tables['dataModels']['headers']))
tables['dataClasses']['headers'] = list(set(tables['dataClasses']['headers']))
tables['dataElements']['headers'] = list(set(tables['dataElements']['headers']))
print("Count: DM ", data['count'], len(data['dataModels']), len(tables['dataModels']['data']))
print("Count: DC ", len(tables['dataClasses']['data']))
print("Count: DE ", len(tables['dataElements']['data']))
return tables
def lookup_pids(data):
pid_list = request_url(DATA_MODEL_PIDS)
for d in data['dataModels']:
id = d['id']
for p in pid_list['data']:
if id in p['datasetIds']:
d['pid'] = p['pid']
return data
def generate_sitemap(data, filename):
BASE_URL = "https://www.healthdatagateway.org/"
DATASET_BASE_URL = "https://web.www.healthdatagateway.org/dataset/{}"
PAGES = [
"https://www.healthdatagateway.org/pages/about",
"https://www.healthdatagateway.org/pages/community",
"https://www.healthdatagateway.org/pages/cookie-notice",
"https://www.healthdatagateway.org/covid-19",
"https://www.healthdatagateway.org/pages/frequently-asked-questions",
"https://www.healthdatagateway.org/pages/guidelines",
"https://www.healthdatagateway.org/pages/key-terms-glossary",
"https://www.healthdatagateway.org/pages/latest-news",
"https://www.healthdatagateway.org/pages/metadata-quality"
]
for d in data['dataModels']:
id = d['id']
PAGES.append(DATASET_BASE_URL.format(id))
with codecs.open(filename, 'w', encoding='utf8') as f:
f.write(BASE_URL + '\n')
f.writelines('\n'.join(PAGES))
def nested_set(dic, keys, value):
for key in keys[:-1]:
dic = dic.setdefault(key, {})
dic[keys[-1]] = value
def generate_nested_dict(metadata, data):
for d in data:
nested_set(metadata, d[0], d[1])
return metadata
def get_v2_metadata(id):
import ast
print("Downloading V2 metadata...")
URL = DATA_MODEL_METADATA.format(MODEL_ID=id)
data = request_url(URL)
metadata = []
for md in data['items']:
# TODO: FIX MDW Bug
if md['key'] == "properties/observations/observations":
md['key'] = "properties/observations"
if md['value'].startswith("[") and md['value'].endswith("]"):
md['value'] = ast.literal_eval(md['value'])
if md['namespace'] == 'org.healthdatagateway':
if md['key'] == "structuralMetadata":
metadata.append(([md['key']], md['value']))
elif md['key'].startswith('properties/'):
key = str(md['key'].split('properties/')[1])
keys = key.split("/")
metadata.append((keys, md['value']))
# FIXME: Gateway dataModel attributes without properties/ prefix :(
else:
keys = md['key'].split("/")
metadata.append((keys, md['value']))
return metadata
def main():
data_models_list = request_url(DATA_MODELS)
print(data_models_list['count'])
data = process_data_models(data_models_list)
data_v1 = {
'count': data['count_v1'],
'dataModels': data['dataModels']
}
data_v2 = {
'count': data['count_v2'],
'dataModels': data['dataModelsV2']
}
export_json(data_v1, 'datasets.json')
export_json(data_v2, 'datasets.v2.json')
# generate sitemap
generate_sitemap(data_v1, 'sitemap.txt')
# generate CSV tables
# data_v2 = read_json('datasets.v2.json')
tables = format_csv_tables(data_v2)
export_csv(tables['dataModels']['data'], 'datasets.csv', tables['dataModels']['headers'])
export_csv(tables['dataClasses']['data'], 'dataclasses.csv', tables['dataClasses']['headers'])
export_csv(tables['dataElements']['data'], 'dataelements.csv', tables['dataElements']['headers'])
if __name__ == "__main__":
main()