forked from susheel/papers
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathnational-priority-extractor.py
152 lines (134 loc) · 4.94 KB
/
national-priority-extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#!/usr/bin/env python
# usage: preprint-extractor.py
__author__ = "Susheel Varma"
__copyright__ = "Copyright (c) 2019-2020 Susheel Varma All Rights Reserved."
__email__ = "[email protected]"
__license__ = "MIT"
import csv
import json
import urllib
import requests
from pprint import pprint
EPMC_BASE_URL = "https://www.ebi.ac.uk/europepmc/webservices/rest/search?resultType=core&pageSize=1000&format=json&"
NATIONAL_PRIORITIES_CSV = "data/national-priorities.csv"
def export_json(data, filename, indent=2):
with open(filename, 'w') as jsonfile:
json.dump(data, jsonfile, indent=indent)
def export_csv(data, header, outputFilename):
with open(outputFilename, 'w') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=header)
writer.writeheader()
writer.writerows(data)
def request_url(URL :str):
"""HTTP GET request and load into json"""
r = requests.get(URL)
if r.status_code != requests.codes.ok:
r.raise_for_status()
return json.loads(r.text)
def read_csv(filename: str):
header = []
data = []
with open(filename, mode='r', encoding='utf-8-sig', newline='') as csvfile:
reader = csv.DictReader(csvfile)
header = reader.fieldnames
for row in reader:
data.append(row)
return header, data
def match_title(title, data):
split_title = title.split()
# Match title on first 7 words
title = " ".join(split_title[0:7])
for d in data['resultList']['result']:
if 'title' in d.keys():
if d.get('title').startswith(title):
return d
return None
def match_id(id, data):
for d in data['resultList']['result']:
if d.get('id') == id:
return d
return None
def extract_paper_from_title(title :str, data :dict):
URL = EPMC_BASE_URL + "query=" + urllib.parse.quote_plus(title)
print(URL)
d = request_url(URL)
paper = match_title(title, d)
return paper
def extract_paper_from_id(id: str, data: dict):
URL = EPMC_BASE_URL + "query=" + urllib.parse.quote_plus(id)
print(URL)
d = request_url(URL)
paper = match_id(id, d)
return paper
def format_data(data):
HEADER = ['id', 'doi', 'originalTitle', 'title', 'authorString', 'authorAffiliations', 'journalTitle', 'pubYear', 'isOpenAccess', 'keywords', 'nationalPriorities', 'healthCategories', 'abstract', 'urls']
DATA = []
for d in data:
print(d['id'])
# Extracting Author affiliations
authorAffiliations = []
if 'authorList' in d.keys():
for author in d['authorList']['author']:
if 'authorAffiliationsList' in author.keys():
if 'authorAffiliation' in author['authorAffiliationsList'].keys():
if None not in author['authorAffiliationsList']['authorAffiliation']:
affiliation = "; ".join(author['authorAffiliationsList']['authorAffiliation'])
authorAffiliations.append(affiliation)
# Extracting URLS
URLS = []
if d.get('fullTextUrlList', None) is not None:
for url in d.get('fullTextUrlList')['fullTextUrl']:
URLS.append("{}:{}".format(url['documentStyle'], url['url']))
# Extracting Keywords
keywords = ""
if 'keywordList' in d.keys():
keywords = keywords + "; ".join(d['keywordList']['keyword'])
if d.get('journalInfo', None) is None:
journalTitle = "No Journal Info"
else:
journalTitle = d.get('journalInfo')['journal']['title']
row = {
'id': d.get('id', ''),
'doi': "https://doi.org/" + d.get('doi',''),
'originalTitle': d.get('original title', ''),
'title': d.get('title', ''),
'authorString': d.get('authorString', ''),
'authorAffiliations': "; ".join(authorAffiliations),
'journalTitle': journalTitle,
'pubYear': d.get('pubYear', ''),
'isOpenAccess': d.get('isOpenAccess', ''),
'keywords': keywords,
'nationalPriorities': d.get('national priority', ''),
'healthCategories': d.get('health category', ''),
'abstract': d.get('abstractText', '')
}
if len(URLS):
row['urls'] = "; ".join(URLS)
else:
row['urls'] = ""
DATA.append(row)
return HEADER, DATA
def main():
NP_PAPERS = []
NP_PAPERS_NOT_FOUND = []
header, national_priorities = read_csv(NATIONAL_PRIORITIES_CSV)
header.append('original title')
total = len(national_priorities)
for i, np in enumerate(national_priorities):
print("Extracting %s/%s" % (i+1,total))
if np.get('id', "") != "":
paper = extract_paper_from_id(np['id'], np)
else:
paper = extract_paper_from_title(np['title'], np)
if paper is not None:
paper['original title'] = np['title']
paper['national priority'] = np['national priority']
paper['health category'] = np['health category']
NP_PAPERS.append(paper)
else:
np['original title'] = np['title']
NP_PAPERS.append(np)
header, data = format_data(NP_PAPERS)
export_csv(data, header, 'data/national-priorities.csv')
if __name__ == "__main__":
main()