forked from susheel/papers
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpaper-extractor.py
192 lines (165 loc) · 7.31 KB
/
paper-extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#!/usr/bin/env python
# usage: paper-extractor.py
__author__ = "Susheel Varma"
__copyright__ = "Copyright (c) 2019-2020 Susheel Varma All Rights Reserved."
__email__ = "[email protected]"
__license__ = "Apache 2"
import csv
import json
import urllib
import requests
from pprint import pprint
EPMC_BASE_URL = "https://www.ebi.ac.uk/europepmc/webservices/rest/search?resultType=core&pageSize=1000&format=json&"
PMCID_LOOKUP_URL = "https://www.ncbi.nlm.nih.gov/pmc/utils/idconv/v1.0/?ids={}&format=json&tool=my_tool&[email protected]"
PREPRINT_QUERY = '(SRC:PPR)'
PAPER_QUERY = 'NOT ' + PREPRINT_QUERY
HDRUK_GRANTS='((GRANT_ID:"HDRUK2020.138" OR GRANT_ID:"MC_PC_20029" OR GRANT_ID:"MC_PC_20058") OR ("HDRUK2020.138" OR "MC_PC_20029" OR "MC_PC_20058") OR ("Data and Connectivity" OR "National Core Studies"))'
HDRUK_ACK_AFF_QUERY=HDRUK_GRANTS + ' OR ' + '((ACK_FUND:"HDRUK" OR ACK_FUND:"HDR UK" OR ACK_FUND:"HDR-UK" OR ACK_FUND:"Health Data Research UK") OR (AFF:"HDRUK" OR AFF:"HDR UK" OR AFF:"HDR-UK" OR AFF:"Health Data Research UK"))'
HDRUK_PAPERS_QUERY = HDRUK_ACK_AFF_QUERY + ' AND ' + PAPER_QUERY
COVID_QUERY = '("2019-nCoV" OR "2019nCoV" OR "COVID-19" OR "SARS-CoV-2" OR "COVID19" OR "COVID" OR "SARS-nCoV" OR ("wuhan" AND "coronavirus") OR "Coronavirus" OR "Corona virus" OR "corona-virus" OR "corona viruses" OR "coronaviruses" OR "SARS-CoV" OR "Orthocoronavirinae" OR "MERS-CoV" OR "Severe Acute Respiratory Syndrome" OR "Middle East Respiratory Syndrome" OR ("SARS" AND "virus") OR "soluble ACE2" OR ("ACE2" AND "virus") OR ("ARDS" AND "virus") or ("angiotensin-converting enzyme 2" AND "virus"))'
COVID_PAPERS_QUERY = COVID_QUERY + ' AND ' + HDRUK_ACK_AFF_QUERY + ' AND ' + PAPER_QUERY
COVID_PREPRINTS_QUERY = COVID_QUERY + ' AND ' + HDRUK_ACK_AFF_QUERY + ' AND ' + PREPRINT_QUERY
# HDR UK Custom tags
NATIONAL_PRIORITIES_CSV = "data/national-priorities.csv"
LAY_SUMMARIES_CSV = "data/lay-summaries.csv"
def request_url(URL):
"""HTTP GET request and load into json"""
r = requests.get(URL)
if r.status_code != requests.codes.ok:
r.raise_for_status()
return json.loads(r.text)
def retrieve_papers(query="", data=None, cursorMark="*"):
if data is None:
DATA = []
else:
DATA = data
query_url_encoded = urllib.parse.quote_plus(query)
URL = EPMC_BASE_URL + "&".join(["query=%s" % query_url_encoded, "cursorMark=%s" % cursorMark])
print("Retrieving papers from", URL)
d = request_url(URL)
numResults = d['hitCount']
DATA.extend(d['resultList']['result'])
if len(DATA) < numResults:
retrieve_papers(query, DATA, cursorMark=d['nextCursorMark'])
return DATA
def get_dois_from_pmcids(data):
pmcids = ",".join([ p['id'] for p in data if p['doi'] == 'https://doi.org/' and p['id'].startswith('PMC')])
ret = request_url(PMCID_LOOKUP_URL.format(pmcids))
for r in ret['records']:
for d in data:
if d['id'] == r['pmcid']:
d['doi'] = "https://doi.org/" + r['doi']
return data
def export_json(data, filename, indent=2):
with open(filename, 'w') as jsonfile:
json.dump(data, jsonfile, indent=indent)
def export_csv(data, header, outputFilename):
with open(outputFilename, 'w') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=header)
writer.writeheader()
writer.writerows(data)
def read_csv(filename):
header = []
data = []
with open(filename, mode='r', encoding='utf-8-sig', newline='') as csvfile:
reader = csv.DictReader(csvfile)
header = reader.fieldnames
for row in reader:
data.append(row)
return data, header
NATIONAL_PRIORITIES, NP_HEADER = read_csv(NATIONAL_PRIORITIES_CSV)
def get_national_priorities(d):
for np in NATIONAL_PRIORITIES:
if d.get('id') == np['id']:
return {
'nationalPriorities': np['nationalPriorities'],
'healthCategories': np['healthCategories']
}
return {
'nationalPriorities': "",
'healthCategories': ""
}
LAY_SUMMARIES, LS_HEADER = read_csv(LAY_SUMMARIES_CSV)
def get_lay_summary(d):
doi = "https://doi.org/" + d.get('doi','')
for ls in LAY_SUMMARIES:
if ls['doi'] == doi:
return ls['lay summary']
return ""
def format_data(data):
HEADER = ['id', 'doi', 'title', 'authorString', 'authorAffiliations', 'journalTitle', 'pubYear', 'date', 'isOpenAccess', 'keywords', 'nationalPriorities', 'healthCategories', 'abstract', 'laySummary', 'urls']
DATA = []
for d in data:
print(d['id'])
# Get National Priorities & Health Categories
np = get_national_priorities(d)
# Get lay Summary
lay_summary = get_lay_summary(d)
# Extracting Author affiliations
authorAffiliations = []
if 'authorList' in d.keys():
for author in d['authorList']['author']:
if 'authorAffiliationsList' in author.keys():
if 'authorAffiliation' in author['authorAffiliationsList'].keys():
if None not in author['authorAffiliationsList']['authorAffiliation']:
affiliation = "; ".join(author['authorAffiliationsList']['authorAffiliation'])
authorAffiliations.append(affiliation)
# Extracting URLS
URLS = []
if d.get('fullTextUrlList', None) is not None:
for url in d.get('fullTextUrlList')['fullTextUrl']:
URLS.append("{}:{}".format(url['documentStyle'], url['url']))
# Extracting Keywords
keywords = ""
if 'keywordList' in d.keys():
keywords = keywords + "; ".join(d['keywordList']['keyword'])
if d.get('journalInfo', None) is None:
journalTitle = "No Journal Info"
else:
journalTitle = d.get('journalInfo')['journal']['title']
row = {
'id': d.get('id', ''),
'doi': "https://doi.org/" + d.get('doi',''),
'title': d.get('title'),
'authorString': d.get('authorString'),
'authorAffiliations': "; ".join(authorAffiliations),
'journalTitle': journalTitle,
'pubYear': d.get('pubYear'),
'date': d.get('firstPublicationDate', None),
'isOpenAccess': d.get('isOpenAccess'),
'keywords': keywords,
'nationalPriorities': np['nationalPriorities'],
'healthCategories': np['healthCategories'],
'abstract': d.get('abstractText', ''),
'laySummary': lay_summary
}
if len(URLS):
row['urls'] = "; ".join(URLS)
else:
row['urls'] = ""
DATA.append(row)
return DATA, HEADER
def merge(key, *lists):
import itertools
from collections import defaultdict
result = defaultdict(dict)
for dictionary in itertools.chain.from_iterable(lists):
result[dictionary[str(key)]].update(dictionary)
return list(result.values())
def main():
# retrieve papers with author affiliation or funding acknowledgement to HDR-UK
papers = retrieve_papers(query=HDRUK_PAPERS_QUERY, data=[])
data, header = format_data(papers)
# data = get_dois_from_pmcids(data)
export_csv(data, header, 'data/papers.csv')
export_json(data, 'data/papers.json')
# retrieve COVID-19 papers with author affiliation or funding acknowledgement to HDR-UK
covid_papers = retrieve_papers(query=COVID_PAPERS_QUERY, data=[])
data, header = format_data(covid_papers)
export_csv(data, header, 'data/covid/papers.csv')
# retrieve COVID-19 preprints with author affiliation or funding acknowledgement to HDR-UK
covid_preprints = retrieve_papers(query=COVID_PREPRINTS_QUERY, data=[])
data, header = format_data(covid_preprints)
export_csv(data, header, 'data/covid/ack-preprints.csv')
if __name__ == "__main__":
main()