-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathinteract.py
84 lines (76 loc) · 3.06 KB
/
interact.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from utils.data_loader import prepare_data_seq
from utils import config
from model.transformer import Transformer
from model.transformer_mulexpert import Transformer_experts
from model.common_layer import evaluate, count_parameters, make_infinite
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.init import xavier_uniform_
import torch.utils.data as data
from tqdm import tqdm
import os
import time
import numpy as np
import math
from collections import deque
DIALOG_SIZE = 3
class Dataset(data.Dataset):
"""Custom data.Dataset compatible with data.DataLoader."""
def __init__(self, data, vocab):
"""Reads source and target sequences from txt files."""
self.vocab = vocab
self.data = data
def __len__(self):
return 1
def __getitem__(self, index):
# here we ignore index since we only have one input
item = {}
item["context_text"] = [x for x in self.data if x!="None"]
X_dial = [config.CLS_idx]
X_mask = [config.CLS_idx]
for i, sentence in enumerate(item["context_text"]):
X_dial += [self.vocab.word2index[word] if word in self.vocab.word2index else config.UNK_idx for word in sentence.split()]
spk = self.vocab.word2index["USR"] if i % 2 == 0 else self.vocab.word2index["SYS"]
X_mask += [spk for _ in range(len(sentence.split()))]
assert len(X_dial) == len(X_mask)
item["context"] = X_dial
item["mask"] = X_mask
item["len"] = len(X_dial)
return item
def collate_fn(data):
input_batch = torch.LongTensor([data[0]["context"]])
input_mask = torch.LongTensor([data[0]["mask"]])
if config.USE_CUDA:
input_batch = input_batch.cuda()
input_mask = input_mask.cuda()
d = {}
d["input_batch"] = input_batch
d["input_lengths"] = torch.LongTensor([data[0]["len"]])
d["mask_input"] = input_mask
d["program_label"] = torch.LongTensor([9]) #fake label
if config.USE_CUDA:
d["program_label"] = d["program_label"].cuda()
return d
def make_batch(inp,vacab):
d = Dataset(inp,vacab)
loader = torch.utils.data.DataLoader(dataset=d, batch_size=1, shuffle=False, collate_fn=collate_fn)
return iter(loader).next()
data_loader_tra, data_loader_val, data_loader_tst, vocab, program_number = prepare_data_seq(batch_size=config.batch_size)
if(config.model == "trs"):
model = Transformer(vocab,decoder_number=program_number, model_file_path=config.save_path, is_eval=True)
elif(config.model == "experts"):
model = Transformer_experts(vocab,decoder_number=program_number, model_file_path=config.save_path, is_eval=True)
if (config.USE_CUDA):
model.cuda()
model = model.eval()
print('Start to chat')
context = deque(DIALOG_SIZE * ['None'], maxlen=DIALOG_SIZE)
while(True):
msg = input(">>> ")
if(len(str(msg).rstrip().lstrip()) != 0):
context.append(str(msg).rstrip().lstrip())
batch = make_batch(context, vocab)
sent_g = model.decoder_greedy(batch,max_dec_step=30)
print(">>>",sent_g[0])
context.append(sent_g[0])