forked from rosinality/denoising-diffusion-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiffusion.py
executable file
·161 lines (124 loc) · 5.24 KB
/
diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import math
import torch
from torch import nn
from torch.nn import functional as F
def make_beta_schedule(
schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3
):
if schedule == "quad":
betas = (
torch.linspace(
linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64
)
** 2
)
elif schedule == "linear":
betas = torch.linspace(
linear_start, linear_end, n_timestep, dtype=torch.float64
)
elif schedule == "cosine":
timesteps = (
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
)
alphas = timesteps / (1 + cosine_s) * math.pi / 2
alphas = torch.cos(alphas).pow(2)
alphas = alphas / alphas[0]
betas = 1 - alphas[1:] / alphas[:-1]
betas = betas.clamp(max=0.999)
return betas
def extract(input, t, shape):
out = torch.gather(input, 0, t)
reshape = [shape[0]] + [1] * (len(shape) - 1)
out = out.reshape(*reshape)
return out
def noise_like(shape, noise_fn, device, repeat=False):
if repeat:
resid = [1] * (len(shape) - 1)
shape_one = (1, *shape[1:])
return noise_fn(*shape_one, device=device).repeat(shape[0], *resid)
else:
return noise_fn(*shape, device=device)
class GaussianDiffusion(nn.Module):
def __init__(self, betas):
super().__init__()
betas = betas.type(torch.float64)
timesteps = betas.shape[0]
self.num_timesteps = int(timesteps)
alphas = 1 - betas
alphas_cumprod = torch.cumprod(alphas, 0)
alphas_cumprod_prev = torch.cat(
(torch.tensor([1], dtype=torch.float64), alphas_cumprod[:-1]), 0
)
posterior_variance = betas * (1 - alphas_cumprod_prev) / (1 - alphas_cumprod)
self.register("betas", betas)
self.register("alphas_cumprod", alphas_cumprod)
self.register("alphas_cumprod_prev", alphas_cumprod_prev)
self.register("sqrt_alphas_cumprod", torch.sqrt(alphas_cumprod))
self.register("sqrt_one_minus_alphas_cumprod", torch.sqrt(1 - alphas_cumprod))
self.register("log_one_minus_alphas_cumprod", torch.log(1 - alphas_cumprod))
self.register("sqrt_recip_alphas_cumprod", torch.rsqrt(alphas_cumprod))
self.register("sqrt_recipm1_alphas_cumprod", torch.sqrt(1 / alphas_cumprod - 1))
self.register("posterior_variance", posterior_variance)
self.register(
"posterior_log_variance_clipped",
torch.log(posterior_variance.clamp(min=1e-20)),
)
self.register(
"posterior_mean_coef1",
(betas * torch.sqrt(alphas_cumprod_prev) / (1 - alphas_cumprod)),
)
self.register(
"posterior_mean_coef2",
((1 - alphas_cumprod_prev) * torch.sqrt(alphas) / (1 - alphas_cumprod)),
)
def register(self, name, tensor):
self.register_buffer(name, tensor.type(torch.float32))
def q_sample(self, x_0, t, noise=None):
if noise is None:
noise = torch.randn_like(x_0)
return (
extract(self.sqrt_alphas_cumprod, t, x_0.shape) * x_0
+ extract(self.sqrt_one_minus_alphas_cumprod, t, x_0.shape) * noise
)
def p_loss(self, model, x_0, t, noise=None):
if noise is None:
noise = torch.randn_like(x_0)
x_noise = self.q_sample(x_0, t, noise)
x_recon = model(x_noise, t)
return F.mse_loss(x_recon, noise)
def predict_start_from_noise(self, x_t, t, noise):
return (
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
- extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
)
def q_posterior(self, x_0, x_t, t):
mean = (
extract(self.posterior_mean_coef1, t, x_t.shape) * x_0
+ extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
var = extract(self.posterior_variance, t, x_t.shape)
log_var_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return mean, var, log_var_clipped
def p_mean_variance(self, model, x, t, clip_denoised):
x_recon = self.predict_start_from_noise(x, t, noise=model(x, t))
if clip_denoised:
x_recon = x_recon.clamp(min=-1, max=1)
mean, var, log_var = self.q_posterior(x_recon, x, t)
return mean, var, log_var
def p_sample(self, model, x, t, noise_fn, clip_denoised=True, repeat_noise=False):
mean, _, log_var = self.p_mean_variance(model, x, t, clip_denoised)
noise = noise_like(x.shape, noise_fn, x.device, repeat_noise)
shape = [x.shape[0]] + [1] * (x.ndim - 1)
nonzero_mask = (1 - (t == 0).type(torch.float32)).view(*shape)
return mean + nonzero_mask * torch.exp(0.5 * log_var) * noise
@torch.no_grad()
def p_sample_loop(self, model, shape, device, noise_fn=torch.randn):
img = noise_fn(shape, device=device)
for i in reversed(range(self.num_timesteps)):
img = self.p_sample(
model,
img,
torch.full((shape[0],), i, dtype=torch.int64).to(device),
noise_fn=noise_fn,
)
return img