-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathsum_of_divisors.java
79 lines (67 loc) · 1.88 KB
/
sum_of_divisors.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
/*
Given a Number. Find it's Sum of Divisors.
The Number can be big such as 10^6 to 10^9
So, If we do this in O(N) we will get Time Limit Exceeded [TLE]
Better Approach is run a loop till sqrt(Number)
Example square root of 10^9 is 31622 (approx), so iteration optimized a lot.
*/
import java.util.Scanner;
import java.lang.*;
import java.math.*;
public class SumofDivisors
{
//this get_sum_of_divisors will count the sum of divisors of the number
static long get_sum_of_divisors(long number)
{
/* Sum of Divisors may not fit in int range
so better take long long int */
long sum_of_divisors = 0, i = 0;
int limit = (int) Math.sqrt(number);
for(i = 1; i < limit; i++)
{
if(number % i == 0)
{
/* Here i is a divisor of that number
( Number / i ) is also a divisor
*/
sum_of_divisors += i;
sum_of_divisors += (number / i);
}
}
if(number % limit == 0)
{
if(limit * limit == number)
{
//means perfect square number
sum_of_divisors += limit;
}
else
{
sum_of_divisors += limit;
sum_of_divisors += (number / limit);
}
}
return sum_of_divisors;
}
public static void main(String args[])
{
Scanner scan = new Scanner(System.in);
System.out.print("Enter the number : \n");
long number = scan.nextLong();
long sum_of_divisors = get_sum_of_divisors(number);
System.out.print("Sum of Divisors of this Number is : ");
System.out.print(sum_of_divisors);
scan.close();
}
}
/*
Standard Input and Output
Enter the number :
1000000000
Sum of Divisors of this Number is : 2497558338
Enter the number :
456723
Sum of Divisors of this Number is : 681408
Time Complexity : O( sqrt(N) )
Space Complexity : O( 1 )
*/