forked from Azure-Samples/azure-search-openai-demo
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprepdocs.py
325 lines (299 loc) · 13.7 KB
/
prepdocs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import argparse
import asyncio
from typing import Any, Optional, Union
from azure.core.credentials import AzureKeyCredential
from azure.core.credentials_async import AsyncTokenCredential
from azure.identity.aio import AzureDeveloperCliCredential
from azure.keyvault.secrets.aio import SecretClient
from prepdocslib.blobmanager import BlobManager
from prepdocslib.embeddings import (
AzureOpenAIEmbeddingService,
ImageEmbeddings,
OpenAIEmbeddings,
OpenAIEmbeddingService,
)
from prepdocslib.fileprocessor import FileProcessor
from prepdocslib.filestrategy import DocumentAction, FileStrategy
from prepdocslib.jsonparser import JsonParser
from prepdocslib.listfilestrategy import (
ADLSGen2ListFileStrategy,
ListFileStrategy,
LocalListFileStrategy,
)
from prepdocslib.parser import Parser
from prepdocslib.pdfparser import DocumentAnalysisParser, LocalPdfParser
from prepdocslib.strategy import SearchInfo, Strategy
from prepdocslib.textsplitter import SentenceTextSplitter, SimpleTextSplitter
def is_key_empty(key):
return key is None or len(key.strip()) == 0
async def get_vision_key(credential: AsyncTokenCredential) -> Optional[str]:
if args.visionkey:
return args.visionkey
if args.keyvaultname and args.visionsecretname:
key_vault_client = SecretClient(vault_url=f"https://{args.keyvaultname}.vault.azure.net", credential=credential)
visionkey = await key_vault_client.get_secret(args.visionsecretname)
return visionkey.value
else:
print("Error: Please provide --visionkey or --keyvaultname and --visionsecretname when using --searchimages.")
exit(1)
async def setup_file_strategy(credential: AsyncTokenCredential, args: Any) -> FileStrategy:
storage_creds = credential if is_key_empty(args.storagekey) else args.storagekey
blob_manager = BlobManager(
endpoint=f"https://{args.storageaccount}.blob.core.windows.net",
container=args.container,
credential=storage_creds,
store_page_images=args.searchimages,
verbose=args.verbose,
)
pdf_parser: Parser
doc_int_parser: DocumentAnalysisParser
# check if Azure Document Intelligence credentials are provided
if args.formrecognizerservice is not None:
formrecognizer_creds: Union[AsyncTokenCredential, AzureKeyCredential] = (
credential if is_key_empty(args.formrecognizerkey) else AzureKeyCredential(args.formrecognizerkey)
)
doc_int_parser = DocumentAnalysisParser(
endpoint=f"https://{args.formrecognizerservice}.cognitiveservices.azure.com/",
credential=formrecognizer_creds,
verbose=args.verbose,
)
if args.localpdfparser or args.formrecognizerservice is None:
pdf_parser = LocalPdfParser()
else:
pdf_parser = doc_int_parser
sentence_text_splitter = SentenceTextSplitter(has_image_embeddings=args.searchimages)
file_processors = {
".pdf": FileProcessor(pdf_parser, sentence_text_splitter),
".json": FileProcessor(JsonParser(), SimpleTextSplitter()),
".docx": FileProcessor(doc_int_parser, sentence_text_splitter),
}
use_vectors = not args.novectors
embeddings: Optional[OpenAIEmbeddings] = None
if use_vectors and args.openaihost != "openai":
azure_open_ai_credential: Union[AsyncTokenCredential, AzureKeyCredential] = (
credential if is_key_empty(args.openaikey) else AzureKeyCredential(args.openaikey)
)
embeddings = AzureOpenAIEmbeddingService(
open_ai_service=args.openaiservice,
open_ai_deployment=args.openaideployment,
open_ai_model_name=args.openaimodelname,
credential=azure_open_ai_credential,
disable_batch=args.disablebatchvectors,
verbose=args.verbose,
)
elif use_vectors:
embeddings = OpenAIEmbeddingService(
open_ai_model_name=args.openaimodelname,
credential=args.openaikey,
organization=args.openaiorg,
disable_batch=args.disablebatchvectors,
verbose=args.verbose,
)
image_embeddings: Optional[ImageEmbeddings] = None
if args.searchimages:
key = await get_vision_key(credential)
image_embeddings = (
ImageEmbeddings(credential=key, endpoint=args.visionendpoint, verbose=args.verbose) if key else None
)
print("Processing files...")
list_file_strategy: ListFileStrategy
if args.datalakestorageaccount:
adls_gen2_creds = credential if is_key_empty(args.datalakekey) else args.datalakekey
print(f"Using Data Lake Gen2 Storage Account {args.datalakestorageaccount}")
list_file_strategy = ADLSGen2ListFileStrategy(
data_lake_storage_account=args.datalakestorageaccount,
data_lake_filesystem=args.datalakefilesystem,
data_lake_path=args.datalakepath,
credential=adls_gen2_creds,
verbose=args.verbose,
)
else:
print(f"Using local files in {args.files}")
list_file_strategy = LocalListFileStrategy(path_pattern=args.files, verbose=args.verbose)
if args.removeall:
document_action = DocumentAction.RemoveAll
elif args.remove:
document_action = DocumentAction.Remove
else:
document_action = DocumentAction.Add
return FileStrategy(
list_file_strategy=list_file_strategy,
blob_manager=blob_manager,
file_processors=file_processors,
document_action=document_action,
embeddings=embeddings,
image_embeddings=image_embeddings,
search_analyzer_name=args.searchanalyzername,
use_acls=args.useacls,
category=args.category,
)
async def main(strategy: Strategy, credential: AsyncTokenCredential, args: Any):
search_key = args.searchkey
if args.keyvaultname and args.searchsecretname:
key_vault_client = SecretClient(vault_url=f"https://{args.keyvaultname}.vault.azure.net", credential=credential)
search_key = (await key_vault_client.get_secret(args.searchsecretname)).value
await key_vault_client.close()
search_creds: Union[AsyncTokenCredential, AzureKeyCredential] = (
credential if is_key_empty(search_key) else AzureKeyCredential(search_key)
)
search_info = SearchInfo(
endpoint=f"https://{args.searchservice}.search.windows.net/",
credential=search_creds,
index_name=args.index,
verbose=args.verbose,
)
if not args.remove and not args.removeall:
await strategy.setup(search_info)
await strategy.run(search_info)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Prepare documents by extracting content from PDFs, splitting content into sections, uploading to blob storage, and indexing in a search index.",
epilog="Example: prepdocs.py '..\data\*' --storageaccount myaccount --container mycontainer --searchservice mysearch --index myindex -v",
)
parser.add_argument("files", nargs="?", help="Files to be processed")
parser.add_argument(
"--datalakestorageaccount", required=False, help="Optional. Azure Data Lake Storage Gen2 Account name"
)
parser.add_argument(
"--datalakefilesystem",
required=False,
default="gptkbcontainer",
help="Optional. Azure Data Lake Storage Gen2 filesystem name",
)
parser.add_argument(
"--datalakepath",
required=False,
help="Optional. Azure Data Lake Storage Gen2 filesystem path containing files to index. If omitted, index the entire filesystem",
)
parser.add_argument(
"--datalakekey", required=False, help="Optional. Use this key when authenticating to Azure Data Lake Gen2"
)
parser.add_argument(
"--useacls", action="store_true", help="Store ACLs from Azure Data Lake Gen2 Filesystem in the search index"
)
parser.add_argument(
"--category", help="Value for the category field in the search index for all sections indexed in this run"
)
parser.add_argument(
"--skipblobs", action="store_true", help="Skip uploading individual pages to Azure Blob Storage"
)
parser.add_argument("--storageaccount", help="Azure Blob Storage account name")
parser.add_argument("--container", help="Azure Blob Storage container name")
parser.add_argument(
"--storagekey",
required=False,
help="Optional. Use this Azure Blob Storage account key instead of the current user identity to login (use az login to set current user for Azure)",
)
parser.add_argument(
"--tenantid", required=False, help="Optional. Use this to define the Azure directory where to authenticate)"
)
parser.add_argument(
"--searchservice",
help="Name of the Azure AI Search service where content should be indexed (must exist already)",
)
parser.add_argument(
"--index",
help="Name of the Azure AI Search index where content should be indexed (will be created if it doesn't exist)",
)
parser.add_argument(
"--searchkey",
required=False,
help="Optional. Use this Azure AI Search account key instead of the current user identity to login (use az login to set current user for Azure)",
)
parser.add_argument(
"--searchsecretname",
required=False,
help="Required if searchkey is not provided and search service is free sku. Fetch the Azure AI Vision key from this keyvault instead of the instead of the current user identity to login (use az login to set current user for Azure)",
)
parser.add_argument(
"--searchanalyzername",
required=False,
default="en.microsoft",
help="Optional. Name of the Azure AI Search analyzer to use for the content field in the index",
)
parser.add_argument("--openaihost", help="Host of the API used to compute embeddings ('azure' or 'openai')")
parser.add_argument("--openaiservice", help="Name of the Azure OpenAI service used to compute embeddings")
parser.add_argument(
"--openaideployment",
help="Name of the Azure OpenAI model deployment for an embedding model ('text-embedding-ada-002' recommended)",
)
parser.add_argument(
"--openaimodelname", help="Name of the Azure OpenAI embedding model ('text-embedding-ada-002' recommended)"
)
parser.add_argument(
"--novectors",
action="store_true",
help="Don't compute embeddings for the sections (e.g. don't call the OpenAI embeddings API during indexing)",
)
parser.add_argument(
"--disablebatchvectors", action="store_true", help="Don't compute embeddings in batch for the sections"
)
parser.add_argument(
"--openaikey",
required=False,
help="Optional. Use this Azure OpenAI account key instead of the current user identity to login (use az login to set current user for Azure). This is required only when using non-Azure endpoints.",
)
parser.add_argument("--openaiorg", required=False, help="This is required only when using non-Azure endpoints.")
parser.add_argument(
"--remove",
action="store_true",
help="Remove references to this document from blob storage and the search index",
)
parser.add_argument(
"--removeall",
action="store_true",
help="Remove all blobs from blob storage and documents from the search index",
)
parser.add_argument(
"--localpdfparser",
action="store_true",
help="Use PyPdf local PDF parser (supports only digital PDFs) instead of Azure Document Intelligence service to extract text, tables and layout from the documents",
)
parser.add_argument(
"--formrecognizerservice",
required=False,
help="Optional. Name of the Azure Document Intelligence service which will be used to extract text, tables and layout from the documents (must exist already)",
)
parser.add_argument(
"--formrecognizerkey",
required=False,
help="Optional. Use this Azure Document Intelligence account key instead of the current user identity to login (use az login to set current user for Azure)",
)
parser.add_argument(
"--searchimages",
action="store_true",
required=False,
help="Optional. Generate image embeddings to enable each page to be searched as an image",
)
parser.add_argument(
"--visionendpoint",
required=False,
help="Optional, required if --searchimages is specified. Endpoint of Azure AI Vision service to use when embedding images.",
)
parser.add_argument(
"--visionkey",
required=False,
help="Required if --searchimages is specified. Use this Azure AI Vision key instead of the instead of the current user identity to login.",
)
parser.add_argument(
"--keyvaultname",
required=False,
help="Required only if any keys must be fetched from the key vault.",
)
parser.add_argument(
"--visionsecretname",
required=False,
help="Required if --searchimages is specified and --keyvaultname is provided. Fetch the Azure AI Vision key from this key vault instead of using the current user identity to login.",
)
parser.add_argument("--verbose", "-v", action="store_true", help="Verbose output")
args = parser.parse_args()
# Use the current user identity to connect to Azure services unless a key is explicitly set for any of them
azd_credential = (
AzureDeveloperCliCredential()
if args.tenantid is None
else AzureDeveloperCliCredential(tenant_id=args.tenantid, process_timeout=60)
)
loop = asyncio.get_event_loop()
file_strategy = loop.run_until_complete(setup_file_strategy(azd_credential, args))
loop.run_until_complete(main(file_strategy, azd_credential, args))
loop.close()