-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
172 lines (152 loc) · 6.31 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#%% Make mol graph
import torch
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data import random_split
import numpy as np
from models import MolSets
from data_utils import GraphSetDataset, graph_set_collate
from torch_geometric.data import Batch
from torch_geometric.loader import DataLoader
import random
from scipy.stats import spearmanr, pearsonr
hyperpars = {
# Architecture
'hidden_dim': 16,
'emb_dim': 32,
'att_dim': 16,
'n_conv_layers': 3,
'conv': 'SAGEConv',
'after_readout': 'tanh',
# Training
'max_ep': 10000,
'es_patience': 10,
'max_ep_wo_improv': 20,
# Learning rate
'lr': 0.001,
'lrsch_patience': 10,
'lrsch_factor': 0.5,
# Regularization
'weight_decay': 0.0001
}
best_model = None
SEED = 42
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
dataset = GraphSetDataset('./data/data_list.pkl')
train_data, val_data, test_data = random_split(dataset, (0.6, 0.2, 0.2))
train_loader = DataLoader(train_data, batch_size=32, shuffle=True)
train_loader.collate_fn = graph_set_collate
val_loader = DataLoader(val_data, batch_size=32, shuffle=True)
val_loader.collate_fn = graph_set_collate
# Train model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = MolSets(n_node_features=13, hidden_dim=hyperpars['hidden_dim'], emb_dim=hyperpars['emb_dim'], att_dim=hyperpars['att_dim'], output_dim=1, conv=hyperpars['conv'], n_conv_layers=hyperpars['n_conv_layers'], after_readout=hyperpars['after_readout']).to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=hyperpars['lr'], weight_decay=hyperpars['weight_decay'])
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=hyperpars['lrsch_factor'], patience=hyperpars['lrsch_patience'], verbose=True)
loss_fn = torch.nn.MSELoss()
def train(model, loader, optimizer, criterion):
model.train()
train_loss = 0
for sample in loader:
# "inputs" are a batch of graphs sets
inputs, mws, fracs, salt_mols, salt_graphs, targets = sample
sample_size = len(targets)
outs = torch.empty((sample_size, 1)).to(device)
targets = torch.tensor(targets).to(device)
salt_mols = torch.tensor(salt_mols).to(device)
for j in range(sample_size):
graph_set = inputs[j].to(device)
salt_graph = salt_graphs[j].to(device)
frac = torch.tensor(fracs[j]).to(device)
mw = torch.tensor(mws[j]).to(device)
optimizer.zero_grad()
outs[j] = model(graph_set, mw, frac, salt_mols[j], salt_graph)
loss = criterion(outs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
return train_loss / len(loader)
def evaluate(model, loader, criterion):
model.eval()
val_loss = 0
with torch.no_grad():
for sample in loader:
inputs, mws, fracs, salt_mols, salt_graphs, targets = sample
sample_size = len(targets)
outs = torch.empty((sample_size, 1)).to(device)
targets = torch.tensor(targets).to(device)
salt_mols = torch.tensor(salt_mols).to(device)
for j in range(sample_size):
graph_set = inputs[j].to(device)
salt_graph = salt_graphs[j].to(device)
frac = torch.tensor(fracs[j]).to(device)
mw = torch.tensor(mws[j]).to(device)
outs[j] = model(graph_set, mw, frac, salt_mols[j], salt_graph)
loss = criterion(outs, targets)
val_loss += loss.item()
return val_loss / len(loader)
# Set early stopping criteria
best_val_loss = np.inf
epochs_wo_improv = 0
print(f'Total params: {sum(param.numel() for param in model.parameters())}')
# The training loop
for epoch in range(hyperpars['max_ep']):
train_loss = train(model, train_loader, optimizer, loss_fn)
val_loss = evaluate(model, val_loader, loss_fn)
scheduler.step(val_loss)
# Early stopping check
if epoch > hyperpars['es_patience']:
if val_loss < best_val_loss:
best_val_loss = val_loss
best_model = model.state_dict()
epochs_wo_improv = 0
else:
epochs_wo_improv += 1
if epochs_wo_improv >= hyperpars['max_ep_wo_improv']:
print(f'Early stopping at epoch {epoch+1}')
break
print(f'Epoch {epoch+1}: Train Loss={train_loss:.5f}, Val Loss={val_loss:.5f}')
#%% Plots
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
mol_types = pd.read_pickle('./data/data_df_stats.pkl')['mol_type']
model_name = '{}_{}_h{}_e{}_att{}_{}'.format(hyperpars['conv'], hyperpars['n_conv_layers'], hyperpars['hidden_dim'], hyperpars['emb_dim'], hyperpars['att_dim'], hyperpars['after_readout'])
targets = []
predicted = []
mol_labels = []
mol_types_list = []
if best_model is not None:
model.load_state_dict(best_model)
torch.save(best_model, 'results/{}.pt'.format(model_name))
model.eval()
with torch.no_grad():
for sample in test_data:
index, inputs, mw, frac, salt_mol, salt_graph, target = sample
inputs = Batch.from_data_list(inputs).to(device)
frac = torch.tensor(frac).to(device)
salt_mol = torch.tensor(salt_mol).to(device)
mw = torch.tensor(mw).to(device)
salt_graph.to(device)
out = model(inputs, mw, frac, salt_mol, salt_graph)
targets.append(target)
predicted.append(out.cpu().numpy())
mol_types_list.append(mol_types[index])
match mol_types[index]:
case 'poly': mol_labels.append(2)
case 'mixed': mol_labels.append(1)
case 'small': mol_labels.append(0)
targets = dataset.get_orig(np.stack(targets).squeeze())
predicted = dataset.get_orig(np.stack(predicted).squeeze())
results = pd.DataFrame({'target': targets, 'predicted': predicted, 'mix_type': mol_types_list})
spearman_r = spearmanr(targets, predicted)
pearson_r = pearsonr(targets, predicted)
print('Spearman r: {}, Pearson r: {}'.format(spearman_r, pearson_r))
sns.scatterplot(data=results, x='target', y='predicted', hue='mix_type')
plt.gca().set_aspect('equal', adjustable='box')
plt.axline([0, 0], [1, 1], color='black')
plt.xlabel('Target - log(S/cm)')
plt.ylabel('Predicted - log(S/cm)')
plt.savefig('results/{}.png'.format(model_name))
results.to_csv('results/{}.csv'.format(model_name), index=False)