-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathprocess_data.py
285 lines (212 loc) · 12.7 KB
/
process_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import os
import json
import numpy as np
import pandas as pd
from six.moves import cPickle as pickle
from harmonics import reconstruct, filter_harmonics, select_significant_harmonics
from steady_samples import generate_rms, get_indices
from utilities import count_progress, lag_value_in_degrees
from kalman_filter import KF_implementation
from s_transform import s_transform
s_matrix_path='data/s_matrix/'
# Load data from submetered metadata file
def metadata_submetered(metadata_file_submetered):
f = open(metadata_file_submetered,'r')
metadata = json.load(f)
appliance_dict={}
for file_number in metadata:
appliance_dict[metadata[file_number]["appliance"]["type"]]=[]
for file_number in metadata:
if metadata[file_number]["appliance"]["type"] in appliance_dict:
appliance_dict[metadata[file_number]["appliance"]["type"]].append(file_number)
f.close()
return appliance_dict
# Load data from aggregated metadata file
def metadata_aggregated(metadata_file_aggregated):
f = open(metadata_file_aggregated,'r')
metadata = json.load(f)
aggregated_dict={}
for file_number in metadata:
aggregated_dict[file_number]={}
for appliance in metadata[file_number]['appliances']:
appliance['on']=appliance['on'].strip('][').split(' ')
appliance['on']=[int(x) for x in appliance['on'] if x]
appliance['off']=appliance['off'].strip('][').split(' ')
appliance['off']=[int(x) for x in appliance['off'] if x]
aggregated_dict[file_number][appliance['type']]={'on':appliance['on'],'off':appliance['off']}
f.close()
return aggregated_dict
# Construct a dictionary with steady samples of current and voltage signals for each appliance
def steady_samples_submetered(submetered_file,data_dict):
n_files=0
for i in data_dict:
n_files+=len(data_dict[i])
signal_dict={}
count=0
for appliance_type in data_dict:
app_n=0
for file in data_dict[appliance_type]:
appliance_type=appliance_type.replace(" ","_")
app_n+=1
count_progress(n_files,count)
count+=1
signal_dict[f"{appliance_type}_{app_n}_{file}"]={'appliance_type':appliance_type,'indices':None,'current':None,'current_rms':None,'voltage':None,'voltage_rms':None,'error_value':None}
with open(submetered_file + file +'.csv') as csv_file:
csv_reader = pd.read_csv(csv_file, header=None, names=(['current','voltage']))
current=np.array(csv_reader['current'],dtype=np.float64)
voltage=np.array(csv_reader['voltage'],dtype=np.float64)
sample_cycles=12
error_image=0
current_rms=generate_rms(current,mode='full_cycle')
indices=get_indices(current_rms,mode='full_cycle',sample_cycles=sample_cycles)
if indices==None:
error_image=1
indices=get_indices(current_rms,None)
signal_dict[f"{appliance_type}_{app_n}_{file}"]['current']=current
signal_dict[f"{appliance_type}_{app_n}_{file}"]['voltage']=voltage
signal_dict[f"{appliance_type}_{app_n}_{file}"]['indices']=indices
signal_dict[f"{appliance_type}_{app_n}_{file}"]['error_value']=error_image
return signal_dict
def construct_aggregated_dict(aggregated_file,data_dict):
n_files=len(data_dict)
signal_dict={}
count=0
for sample_number in data_dict:
signal_dict[sample_number]={'current':None,'voltage':None,'appliances':data_dict[sample_number]}
count_progress(n_files,count)
count+=1
with open(aggregated_file + sample_number +'.csv') as csv_file:
csv_reader = pd.read_csv(csv_file, header=None, names=(['current','voltage']))
current=np.array(csv_reader['current'],dtype=np.float64)
voltage=np.array(csv_reader['voltage'],dtype=np.float64)
signal_dict[sample_number]['current']=current
signal_dict[sample_number]['voltage']=voltage
return signal_dict
def construct_s_matrix_signals(aggregated_dict,data_dict,filename):
n_files=len(aggregated_dict)
signal_dict={}
# Power signal frequency in Hz
power_frequency=120
# Gauss window width in Hz
gauss_width=2*power_frequency
# Range of frequencies from harmonic frequency (see s_transform function)
range_from_harmonic=1/2*power_frequency
# Number of significant harmonics to extract
n_harmonics=10
count=0
for i in range(1,n_files+1):
signal_dict={'combined_harmonics': None,'zero_frequency':None,'noise':None,'harmonic_list':None,'appliances':data_dict[str(i)]}
count_progress(n_files,count)
count+=1
current=aggregated_dict[str(i)]['current']
voltage=aggregated_dict[str(i)]['voltage']
N=len(current)
combination=voltage*current
combination_fft=np.fft.fft(combination)
harmonic_list_by_magnitude=select_significant_harmonics(combination_fft,rank_size=n_harmonics,grid_frequency=power_frequency)
combination_ST_matrix,noise_combination,gauss_comb,combination_fft_ST,fstart_comb,fend_comb=s_transform(combination,gauss_width,range_from_harmonic,harmonic_list_by_magnitude,grid_frequency=power_frequency)
combination_ST=np.zeros(N,dtype='complex_')
for harmonic in combination_ST_matrix:
if harmonic!=0:
combination_ST+=combination_ST_matrix[harmonic]
signal_dict['combined_harmonics']=combination_ST
signal_dict['zero_frequency']=combination_ST_matrix[0]
signal_dict['noise']=noise_combination
signal_dict['harmonic_list']=harmonic_list_by_magnitude
if not os.path.exists(filename):
os.makedirs(filename)
with open(f"{filename}s_matrix_dict_file{i}.pkl", 'wb') as f:
pickle.dump(signal_dict, f, pickle.HIGHEST_PROTOCOL)
def construct_residual_signals(metadata_aggregated,filename,s_matrix_path):
n_files=len(metadata_aggregated)
count=0
for i in range(1,n_files+1):
count_progress(n_files,count)
count+=1
with open(f"{s_matrix_path}s_matrix_dict_file{i}.pkl", 'rb') as f:
s_matrix_power=pickle.load(f)
power=s_matrix_power['combined_harmonics']+s_matrix_power['zero_frequency']
harmonic_list=s_matrix_power['harmonic_list']
residual_power=KF_implementation(power,zero_frequency_signal=s_matrix_power['zero_frequency'],harmonic_list=harmonic_list)
if not os.path.exists(filename):
os.makedirs(filename)
with open(f"{filename}residual_power_file{i}.pkl", 'wb') as f:
pickle.dump(residual_power, f, pickle.HIGHEST_PROTOCOL)
def construct_aggregated_harmonics_dict(aggregated_dict,highest_harmonic_order,sample_frequency=30000,grid_frequency=60):
# Number of samples per cycle
n_cycle=sample_frequency/grid_frequency
# List of harmonic numbers
harmonic_list = range(1,highest_harmonic_order+1)
# Constructing aggregated_harmonic_dict
aggregated_harmonic_dict={}
for sample_number,value in aggregated_dict.items():
aggregated_harmonic_dict[sample_number]={}
indices = value.get('indices')
for interval in indices:
aggregated_harmonic_dict[sample_number][tuple(interval)]={}
for harmonic_order in harmonic_list:
aggregated_harmonic_dict[sample_number][tuple(interval)][harmonic_order]=[]
n_samples=len(aggregated_dict)
count=0
for sample_number,value in aggregated_dict.items():
count_progress(n_samples,count)
count+=1
current = value.get('current')
indices = value.get('indices')
for interval in indices:
current_interval=current[interval[0]:interval[1]]
current_fft_amp,current_fft_phase=filter_harmonics(current_interval,highest_harmonic_order)
current_fft=current_fft_amp*np.exp(current_fft_phase*1j)
current_decomposed,THD_current=reconstruct(current_fft,21,int(n_cycle))
for harmonic_order in current_decomposed:
aggregated_harmonic_dict[sample_number][tuple(interval)][harmonic_order]=current_decomposed[harmonic_order]
return aggregated_harmonic_dict
def construct_harmonics_dict(signal_dict,highest_harmonic_order):
# List of harmonic numbers
harmonic_list = range(1,highest_harmonic_order+1)
# Constructing harmonic_dict
harmonic_dict={}
for appliance_name,value in signal_dict.items():
appliance_type = value.get('appliance_type')
harmonic_dict[appliance_type]={'appliance':{},'mean_lag':[],'mean_THD_current':[],'max_current':[],'first_harmonic_mag':[],'harmonics_proportions':{}}
n_appliances=len(signal_dict)
count=0
for appliance_name,value in signal_dict.items():
appliance_type = value.get('appliance_type')
error_value = value.get('error_value')
harmonic_dict[appliance_type]['appliance'][appliance_name]={'error_value':error_value,'THD_current':None, 'THD_voltage':None,'harmonic_order':{}}
count_progress(n_appliances,count)
count+=1
for harmonic_order in harmonic_list:
harmonic_dict[appliance_type]['appliance'][appliance_name]['harmonic_order'][harmonic_order]={'current': [],'voltage':[]}
harmonic_dict[appliance_type]['harmonics_proportions'][harmonic_order]=[]
indices=value.get('indices')
current=value.get('current')
voltage=value.get('voltage')
voltage=voltage[indices[0]:indices[1]]
current=current[indices[0]:indices[1]]
current_fft_amp,current_fft_phase=filter_harmonics(current,highest_harmonic_order)
current_fft=current_fft_amp*np.exp(current_fft_phase*1j)
current_decomposed,THD_current=reconstruct(current_fft,21)
harmonic_dict[appliance_type]['appliance'][appliance_name]['THD_current']=THD_current
voltage_fft_amp,voltage_fft_phase=filter_harmonics(voltage,1)
voltage_fft=voltage_fft_amp*np.exp(voltage_fft_phase*1j)
voltage_decomposed,THD_voltage=reconstruct(voltage_fft,1)
harmonic_dict[appliance_type]['appliance'][appliance_name]['harmonic_order'][1]['voltage']=(voltage_decomposed[1])
harmonic_dict[appliance_type]['appliance'][appliance_name]['THD_voltage']=THD_voltage
harmonic_dict[appliance_type]['first_harmonic_mag'].append(max(current_decomposed[1]))
lag=lag_value_in_degrees(current,voltage)
if harmonic_dict[appliance_type]['appliance'][appliance_name]['error_value']==0:
harmonic_dict[appliance_type]['mean_lag'].append(lag)
harmonic_dict[appliance_type]['mean_THD_current'].append(THD_current)
harmonic_dict[appliance_type]['max_current'].append(max(current))
for harmonic_order in current_decomposed:
harmonic_dict[appliance_type]['appliance'][appliance_name]['harmonic_order'][harmonic_order]['current']=(current_decomposed[harmonic_order])
harmonic_dict[appliance_type]['harmonics_proportions'][harmonic_order].append(max(current_decomposed[harmonic_order])/max(current_decomposed[1]))
for appliance_type in harmonic_dict:
harmonic_dict[appliance_type]['mean_lag']=int(np.mean(harmonic_dict[appliance_type]['mean_lag']))
harmonic_dict[appliance_type]['mean_THD_current']=np.mean(harmonic_dict[appliance_type]['mean_THD_current'])
harmonic_dict[appliance_type]['max_current']=max(harmonic_dict[appliance_type]['max_current'])
for harmonic_order in harmonic_dict[appliance_type]['harmonics_proportions']:
harmonic_dict[appliance_type]['harmonics_proportions'][harmonic_order]=np.mean(harmonic_dict[appliance_type]['harmonics_proportions'][harmonic_order])
return harmonic_dict