generated from HephaestusProject/template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
95 lines (82 loc) · 3.25 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
"""
Usage:
main.py train [options] [--dataset-config=<dataset config path>] [--model-config=<model config path>] [--runner-config=<runner config path>]
main.py train (-h | --help)
Options:
--dataset-config <dataset config path> Path to YAML file for dataset configuration [default: conf/mlp/dataset/dataset.yml] [type: path]
--model-config <model config path> Path to YAML file for model configuration [default: conf/mlp/model/model.yml] [type: path]
--runner-config <runner config path> Path to YAML file for model configuration [default: conf/mlp/runner/runner.yml] [type: path]
-h --help Show this.
"""
from pathlib import Path
from typing import Dict, List, Tuple, Union
import pytorch_lightning as pl
import torch.nn as nn
import torchvision.transforms as transforms
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.callbacks import (
Callback,
EarlyStopping,
LearningRateMonitor,
ModelCheckpoint,
)
from torch.utils.data import DataLoader
import wandb
from src.model import net as Net
from src.model.net import BinaryConv, BinaryLinear
from src.runner.runner import TrainingContainer
from src.utils import (
get_checkpoint_callback,
get_config,
get_data_loaders,
get_early_stopper,
get_log_dir,
get_next_version,
get_wandb_logger,
load_class,
)
def build_model(model_conf: DictConfig):
return load_class(module=Net, name=model_conf.type, args={"model_config": model_conf})
def train(hparams: dict):
config_list = ["--dataset-config", "--model-config", "--runner-config"]
config: DictConfig = get_config(hparams=hparams, options=config_list)
log_dir = get_log_dir(config=config)
log_dir.mkdir(parents=True, exist_ok=True)
train_dataloader, test_dataloader = get_data_loaders(config=config)
model: nn.Module = build_model(model_conf=config.model)
training_container: pl.LightningModule = TrainingContainer(model=model, config=config)
checkpoint_callback = get_checkpoint_callback(log_dir=log_dir, config=config)
wandb_logger = get_wandb_logger(log_dir=log_dir, config=config)
wandb_logger.watch(model, log="gradients", log_freq=100)
lr_logger = LearningRateMonitor()
early_stop_callback = get_early_stopper(
early_stopping_config=config.runner.earlystopping.params
)
with (log_dir / Path("config.yaml")).open("w") as f:
OmegaConf.save(config=config, f=f)
trainer = Trainer(
accelerator=config.runner.trainer.distributed_backend,
fast_dev_run=False,
gpus=config.runner.trainer.params.gpus,
amp_level="O2",
logger=wandb_logger,
callbacks=[early_stop_callback, lr_logger],
checkpoint_callback=checkpoint_callback,
max_epochs=config.runner.trainer.params.max_epochs,
weights_summary="top",
reload_dataloaders_every_epoch=False,
resume_from_checkpoint=None,
benchmark=False,
deterministic=True,
num_sanity_val_steps=0,
overfit_batches=0.0,
precision=32,
profiler=True,
limit_train_batches=1.0,
)
trainer.fit(
model=training_container,
train_dataloader=train_dataloader,
val_dataloaders=test_dataloader,
)