-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbitops.c
1131 lines (1020 loc) · 40.6 KB
/
bitops.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Bit operations.
*
* Copyright (c) 2009-2012, Salvatore Sanfilippo <antirez at gmail dot com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "server.h"
/* -----------------------------------------------------------------------------
* Helpers and low level bit functions.
* -------------------------------------------------------------------------- */
/* Count number of bits set in the binary array pointed by 's' and long
* 'count' bytes. The implementation of this function is required to
* work with a input string length up to 512 MB. */
size_t redisPopcount(void *s, long count) {
size_t bits = 0;
unsigned char *p = s;
uint32_t *p4;
static const unsigned char bitsinbyte[256] = {0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8};
/* Count initial bytes not aligned to 32 bit. */
while((unsigned long)p & 3 && count) {
bits += bitsinbyte[*p++];
count--;
}
/* Count bits 28 bytes at a time */
p4 = (uint32_t*)p;
while(count>=28) {
uint32_t aux1, aux2, aux3, aux4, aux5, aux6, aux7;
aux1 = *p4++;
aux2 = *p4++;
aux3 = *p4++;
aux4 = *p4++;
aux5 = *p4++;
aux6 = *p4++;
aux7 = *p4++;
count -= 28;
aux1 = aux1 - ((aux1 >> 1) & 0x55555555);
aux1 = (aux1 & 0x33333333) + ((aux1 >> 2) & 0x33333333);
aux2 = aux2 - ((aux2 >> 1) & 0x55555555);
aux2 = (aux2 & 0x33333333) + ((aux2 >> 2) & 0x33333333);
aux3 = aux3 - ((aux3 >> 1) & 0x55555555);
aux3 = (aux3 & 0x33333333) + ((aux3 >> 2) & 0x33333333);
aux4 = aux4 - ((aux4 >> 1) & 0x55555555);
aux4 = (aux4 & 0x33333333) + ((aux4 >> 2) & 0x33333333);
aux5 = aux5 - ((aux5 >> 1) & 0x55555555);
aux5 = (aux5 & 0x33333333) + ((aux5 >> 2) & 0x33333333);
aux6 = aux6 - ((aux6 >> 1) & 0x55555555);
aux6 = (aux6 & 0x33333333) + ((aux6 >> 2) & 0x33333333);
aux7 = aux7 - ((aux7 >> 1) & 0x55555555);
aux7 = (aux7 & 0x33333333) + ((aux7 >> 2) & 0x33333333);
bits += ((((aux1 + (aux1 >> 4)) & 0x0F0F0F0F) +
((aux2 + (aux2 >> 4)) & 0x0F0F0F0F) +
((aux3 + (aux3 >> 4)) & 0x0F0F0F0F) +
((aux4 + (aux4 >> 4)) & 0x0F0F0F0F) +
((aux5 + (aux5 >> 4)) & 0x0F0F0F0F) +
((aux6 + (aux6 >> 4)) & 0x0F0F0F0F) +
((aux7 + (aux7 >> 4)) & 0x0F0F0F0F))* 0x01010101) >> 24;
}
/* Count the remaining bytes. */
p = (unsigned char*)p4;
while(count--) bits += bitsinbyte[*p++];
return bits;
}
/* Return the position of the first bit set to one (if 'bit' is 1) or
* zero (if 'bit' is 0) in the bitmap starting at 's' and long 'count' bytes.
*
* The function is guaranteed to return a value >= 0 if 'bit' is 0 since if
* no zero bit is found, it returns count*8 assuming the string is zero
* padded on the right. However if 'bit' is 1 it is possible that there is
* not a single set bit in the bitmap. In this special case -1 is returned. */
long redisBitpos(void *s, unsigned long count, int bit) {
unsigned long *l;
unsigned char *c;
unsigned long skipval, word = 0, one;
long pos = 0; /* Position of bit, to return to the caller. */
unsigned long j;
int found;
/* Process whole words first, seeking for first word that is not
* all ones or all zeros respectively if we are lookig for zeros
* or ones. This is much faster with large strings having contiguous
* blocks of 1 or 0 bits compared to the vanilla bit per bit processing.
*
* Note that if we start from an address that is not aligned
* to sizeof(unsigned long) we consume it byte by byte until it is
* aligned. */
/* Skip initial bits not aligned to sizeof(unsigned long) byte by byte. */
skipval = bit ? 0 : UCHAR_MAX;
c = (unsigned char*) s;
found = 0;
while((unsigned long)c & (sizeof(*l)-1) && count) {
if (*c != skipval) {
found = 1;
break;
}
c++;
count--;
pos += 8;
}
/* Skip bits with full word step. */
l = (unsigned long*) c;
if (!found) {
skipval = bit ? 0 : ULONG_MAX;
while (count >= sizeof(*l)) {
if (*l != skipval) break;
l++;
count -= sizeof(*l);
pos += sizeof(*l)*8;
}
}
/* Load bytes into "word" considering the first byte as the most significant
* (we basically consider it as written in big endian, since we consider the
* string as a set of bits from left to right, with the first bit at position
* zero.
*
* Note that the loading is designed to work even when the bytes left
* (count) are less than a full word. We pad it with zero on the right. */
c = (unsigned char*)l;
for (j = 0; j < sizeof(*l); j++) {
word <<= 8;
if (count) {
word |= *c;
c++;
count--;
}
}
/* Special case:
* If bits in the string are all zero and we are looking for one,
* return -1 to signal that there is not a single "1" in the whole
* string. This can't happen when we are looking for "0" as we assume
* that the right of the string is zero padded. */
if (bit == 1 && word == 0) return -1;
/* Last word left, scan bit by bit. The first thing we need is to
* have a single "1" set in the most significant position in an
* unsigned long. We don't know the size of the long so we use a
* simple trick. */
one = ULONG_MAX; /* All bits set to 1.*/
one >>= 1; /* All bits set to 1 but the MSB. */
one = ~one; /* All bits set to 0 but the MSB. */
while(one) {
if (((one & word) != 0) == bit) return pos;
pos++;
one >>= 1;
}
/* If we reached this point, there is a bug in the algorithm, since
* the case of no match is handled as a special case before. */
serverPanic("End of redisBitpos() reached.");
return 0; /* Just to avoid warnings. */
}
/* The following set.*Bitfield and get.*Bitfield functions implement setting
* and getting arbitrary size (up to 64 bits) signed and unsigned integers
* at arbitrary positions into a bitmap.
*
* The representation considers the bitmap as having the bit number 0 to be
* the most significant bit of the first byte, and so forth, so for example
* setting a 5 bits unsigned integer to value 23 at offset 7 into a bitmap
* previously set to all zeroes, will produce the following representation:
*
* +--------+--------+
* |00000001|01110000|
* +--------+--------+
*
* When offsets and integer sizes are aligned to bytes boundaries, this is the
* same as big endian, however when such alignment does not exist, its important
* to also understand how the bits inside a byte are ordered.
*
* Note that this format follows the same convention as SETBIT and related
* commands.
*/
void setUnsignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits, uint64_t value) {
uint64_t byte, bit, byteval, bitval, j;
for (j = 0; j < bits; j++) {
bitval = (value & ((uint64_t)1<<(bits-1-j))) != 0;
byte = offset >> 3;
bit = 7 - (offset & 0x7);
byteval = p[byte];
byteval &= ~(1 << bit);
byteval |= bitval << bit;
p[byte] = byteval & 0xff;
offset++;
}
}
void setSignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits, int64_t value) {
uint64_t uv = value; /* Casting will add UINT64_MAX + 1 if v is negative. */
setUnsignedBitfield(p,offset,bits,uv);
}
uint64_t getUnsignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits) {
uint64_t byte, bit, byteval, bitval, j, value = 0;
for (j = 0; j < bits; j++) {
byte = offset >> 3;
bit = 7 - (offset & 0x7);
byteval = p[byte];
bitval = (byteval >> bit) & 1;
value = (value<<1) | bitval;
offset++;
}
return value;
}
int64_t getSignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits) {
int64_t value;
union {uint64_t u; int64_t i;} conv;
/* Converting from unsigned to signed is undefined when the value does
* not fit, however here we assume two's complement and the original value
* was obtained from signed -> unsigned conversion, so we'll find the
* most significant bit set if the original value was negative.
*
* Note that two's complement is mandatory for exact-width types
* according to the C99 standard. */
conv.u = getUnsignedBitfield(p,offset,bits);
value = conv.i;
/* If the top significant bit is 1, propagate it to all the
* higher bits for two's complement representation of signed
* integers. */
if (value & ((uint64_t)1 << (bits-1)))
value |= ((uint64_t)-1) << bits;
return value;
}
/* The following two functions detect overflow of a value in the context
* of storing it as an unsigned or signed integer with the specified
* number of bits. The functions both take the value and a possible increment.
* If no overflow could happen and the value+increment fit inside the limits,
* then zero is returned, otherwise in case of overflow, 1 is returned,
* otherwise in case of underflow, -1 is returned.
*
* When non-zero is returned (oferflow or underflow), if not NULL, *limit is
* set to the value the operation should result when an overflow happens,
* depending on the specified overflow semantics:
*
* For BFOVERFLOW_SAT if 1 is returned, *limit it is set maximum value that
* you can store in that integer. when -1 is returned, *limit is set to the
* minimum value that an integer of that size can represent.
*
* For BFOVERFLOW_WRAP *limit is set by performing the operation in order to
* "wrap" around towards zero for unsigned integers, or towards the most
* negative number that is possible to represent for signed integers. */
#define BFOVERFLOW_WRAP 0
#define BFOVERFLOW_SAT 1
#define BFOVERFLOW_FAIL 2 /* Used by the BITFIELD command implementation. */
int checkUnsignedBitfieldOverflow(uint64_t value, int64_t incr, uint64_t bits, int owtype, uint64_t *limit) {
uint64_t max = (bits == 64) ? UINT64_MAX : (((uint64_t)1<<bits)-1);
int64_t maxincr = max-value;
int64_t minincr = -value;
if (value > max || (incr > 0 && incr > maxincr)) {
if (limit) {
if (owtype == BFOVERFLOW_WRAP) {
goto handle_wrap;
} else if (owtype == BFOVERFLOW_SAT) {
*limit = max;
}
}
return 1;
} else if (incr < 0 && incr < minincr) {
if (limit) {
if (owtype == BFOVERFLOW_WRAP) {
goto handle_wrap;
} else if (owtype == BFOVERFLOW_SAT) {
*limit = 0;
}
}
return -1;
}
return 0;
handle_wrap:
{
uint64_t mask = ((uint64_t)-1) << bits;
uint64_t res = value+incr;
res &= ~mask;
*limit = res;
}
return 1;
}
int checkSignedBitfieldOverflow(int64_t value, int64_t incr, uint64_t bits, int owtype, int64_t *limit) {
int64_t max = (bits == 64) ? INT64_MAX : (((int64_t)1<<(bits-1))-1);
int64_t min = (-max)-1;
/* Note that maxincr and minincr could overflow, but we use the values
* only after checking 'value' range, so when we use it no overflow
* happens. */
int64_t maxincr = max-value;
int64_t minincr = min-value;
if (value > max || (bits != 64 && incr > maxincr) || (value >= 0 && incr > 0 && incr > maxincr))
{
if (limit) {
if (owtype == BFOVERFLOW_WRAP) {
goto handle_wrap;
} else if (owtype == BFOVERFLOW_SAT) {
*limit = max;
}
}
return 1;
} else if (value < min || (bits != 64 && incr < minincr) || (value < 0 && incr < 0 && incr < minincr)) {
if (limit) {
if (owtype == BFOVERFLOW_WRAP) {
goto handle_wrap;
} else if (owtype == BFOVERFLOW_SAT) {
*limit = min;
}
}
return -1;
}
return 0;
handle_wrap:
{
uint64_t mask = ((uint64_t)-1) << bits;
uint64_t msb = (uint64_t)1 << (bits-1);
uint64_t a = value, b = incr, c;
c = a+b; /* Perform addition as unsigned so that's defined. */
/* If the sign bit is set, propagate to all the higher order
* bits, to cap the negative value. If it's clear, mask to
* the positive integer limit. */
if (c & msb) {
c |= mask;
} else {
c &= ~mask;
}
*limit = c;
}
return 1;
}
/* Debugging function. Just show bits in the specified bitmap. Not used
* but here for not having to rewrite it when debugging is needed. */
void printBits(unsigned char *p, unsigned long count) {
unsigned long j, i, byte;
for (j = 0; j < count; j++) {
byte = p[j];
for (i = 0x80; i > 0; i /= 2)
printf("%c", (byte & i) ? '1' : '0');
printf("|");
}
printf("\n");
}
/* -----------------------------------------------------------------------------
* Bits related string commands: GETBIT, SETBIT, BITCOUNT, BITOP.
* -------------------------------------------------------------------------- */
#define BITOP_AND 0
#define BITOP_OR 1
#define BITOP_XOR 2
#define BITOP_NOT 3
#define BITFIELDOP_GET 0
#define BITFIELDOP_SET 1
#define BITFIELDOP_INCRBY 2
/* This helper function used by GETBIT / SETBIT parses the bit offset argument
* making sure an error is returned if it is negative or if it overflows
* Redis 512 MB limit for the string value.
*
* If the 'hash' argument is true, and 'bits is positive, then the command
* will also parse bit offsets prefixed by "#". In such a case the offset
* is multiplied by 'bits'. This is useful for the BITFIELD command. */
int getBitOffsetFromArgument(client *c, robj *o, size_t *offset, int hash, int bits) {
long long loffset;
char *err = "bit offset is not an integer or out of range";
char *p = o->ptr;
size_t plen = sdslen(p);
int usehash = 0;
/* Handle #<offset> form. */
if (p[0] == '#' && hash && bits > 0) usehash = 1;
if (string2ll(p+usehash,plen-usehash,&loffset) == 0) {
addReplyError(c,err);
return C_ERR;
}
/* Adjust the offset by 'bits' for #<offset> form. */
if (usehash) loffset *= bits;
/* Limit offset to 512MB in bytes */
if ((loffset < 0) || ((unsigned long long)loffset >> 3) >= (512*1024*1024))
{
addReplyError(c,err);
return C_ERR;
}
*offset = (size_t)loffset;
return C_OK;
}
/* This helper function for BITFIELD parses a bitfield type in the form
* <sign><bits> where sign is 'u' or 'i' for unsigned and signed, and
* the bits is a value between 1 and 64. However 64 bits unsigned integers
* are reported as an error because of current limitations of Redis protocol
* to return unsigned integer values greater than INT64_MAX.
*
* On error C_ERR is returned and an error is sent to the client. */
int getBitfieldTypeFromArgument(client *c, robj *o, int *sign, int *bits) {
char *p = o->ptr;
char *err = "Invalid bitfield type. Use something like i16 u8. Note that u64 is not supported but i64 is.";
long long llbits;
if (p[0] == 'i') {
*sign = 1;
} else if (p[0] == 'u') {
*sign = 0;
} else {
addReplyError(c,err);
return C_ERR;
}
if ((string2ll(p+1,strlen(p+1),&llbits)) == 0 ||
llbits < 1 ||
(*sign == 1 && llbits > 64) ||
(*sign == 0 && llbits > 63))
{
addReplyError(c,err);
return C_ERR;
}
*bits = llbits;
return C_OK;
}
/* This is an helper function for commands implementations that need to write
* bits to a string object. The command creates or pad with zeroes the string
* so that the 'maxbit' bit can be addressed. The object is finally
* returned. Otherwise if the key holds a wrong type NULL is returned and
* an error is sent to the client. */
robj *lookupStringForBitCommand(client *c, size_t maxbit) {
size_t byte = maxbit >> 3;
robj *o = lookupKeyWrite(c->db,c->argv[1]);
if (o == NULL) {
o = createObject(OBJ_STRING,sdsnewlen(NULL, byte+1));
dbAdd(c->db,c->argv[1],o);
} else {
if (checkType(c,o,OBJ_STRING)) return NULL;
o = dbUnshareStringValue(c->db,c->argv[1],o);
o->ptr = sdsgrowzero(o->ptr,byte+1);
}
return o;
}
/* Return a pointer to the string object content, and stores its length
* in 'len'. The user is required to pass (likely stack allocated) buffer
* 'llbuf' of at least LONG_STR_SIZE bytes. Such a buffer is used in the case
* the object is integer encoded in order to provide the representation
* without usign heap allocation.
*
* The function returns the pointer to the object array of bytes representing
* the string it contains, that may be a pointer to 'llbuf' or to the
* internal object representation. As a side effect 'len' is filled with
* the length of such buffer.
*
* If the source object is NULL the function is guaranteed to return NULL
* and set 'len' to 0. */
unsigned char *getObjectReadOnlyString(robj *o, long *len, char *llbuf) {
serverAssert(o->type == OBJ_STRING);
unsigned char *p = NULL;
/* Set the 'p' pointer to the string, that can be just a stack allocated
* array if our string was integer encoded. */
if (o && o->encoding == OBJ_ENCODING_INT) {
p = (unsigned char*) llbuf;
if (len) *len = ll2string(llbuf,LONG_STR_SIZE,(long)o->ptr);
} else if (o) {
p = (unsigned char*) o->ptr;
if (len) *len = sdslen(o->ptr);
} else {
if (len) *len = 0;
}
return p;
}
/* SETBIT key offset bitvalue */
void setbitCommand(client *c) {
robj *o;
char *err = "bit is not an integer or out of range";
size_t bitoffset;
ssize_t byte, bit;
int byteval, bitval;
long on;
if (getBitOffsetFromArgument(c,c->argv[2],&bitoffset,0,0) != C_OK)
return;
if (getLongFromObjectOrReply(c,c->argv[3],&on,err) != C_OK)
return;
/* Bits can only be set or cleared... */
if (on & ~1) {
addReplyError(c,err);
return;
}
if ((o = lookupStringForBitCommand(c,bitoffset)) == NULL) return;
/* Get current values */
byte = bitoffset >> 3;
byteval = ((uint8_t*)o->ptr)[byte];
bit = 7 - (bitoffset & 0x7);
bitval = byteval & (1 << bit);
/* Update byte with new bit value and return original value */
byteval &= ~(1 << bit);
byteval |= ((on & 0x1) << bit);
((uint8_t*)o->ptr)[byte] = byteval;
signalModifiedKey(c->db,c->argv[1]);
notifyKeyspaceEvent(NOTIFY_STRING,"setbit",c->argv[1],c->db->id);
server.dirty++;
addReply(c, bitval ? shared.cone : shared.czero);
}
/* GETBIT key offset */
void getbitCommand(client *c) {
robj *o;
char llbuf[32];
size_t bitoffset;
size_t byte, bit;
size_t bitval = 0;
if (getBitOffsetFromArgument(c,c->argv[2],&bitoffset,0,0) != C_OK)
return;
if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL ||
checkType(c,o,OBJ_STRING)) return;
byte = bitoffset >> 3;
bit = 7 - (bitoffset & 0x7);
if (sdsEncodedObject(o)) {
if (byte < sdslen(o->ptr))
bitval = ((uint8_t*)o->ptr)[byte] & (1 << bit);
} else {
if (byte < (size_t)ll2string(llbuf,sizeof(llbuf),(long)o->ptr))
bitval = llbuf[byte] & (1 << bit);
}
addReply(c, bitval ? shared.cone : shared.czero);
}
/* BITOP op_name target_key src_key1 src_key2 src_key3 ... src_keyN */
void bitopCommand(client *c) {
char *opname = c->argv[1]->ptr;
robj *o, *targetkey = c->argv[2];
unsigned long op, j, numkeys;
robj **objects; /* Array of source objects. */
unsigned char **src; /* Array of source strings pointers. */
unsigned long *len, maxlen = 0; /* Array of length of src strings,
and max len. */
unsigned long minlen = 0; /* Min len among the input keys. */
unsigned char *res = NULL; /* Resulting string. */
/* Parse the operation name. */
if ((opname[0] == 'a' || opname[0] == 'A') && !strcasecmp(opname,"and"))
op = BITOP_AND;
else if((opname[0] == 'o' || opname[0] == 'O') && !strcasecmp(opname,"or"))
op = BITOP_OR;
else if((opname[0] == 'x' || opname[0] == 'X') && !strcasecmp(opname,"xor"))
op = BITOP_XOR;
else if((opname[0] == 'n' || opname[0] == 'N') && !strcasecmp(opname,"not"))
op = BITOP_NOT;
else {
addReply(c,shared.syntaxerr);
return;
}
/* Sanity check: NOT accepts only a single key argument. */
if (op == BITOP_NOT && c->argc != 4) {
addReplyError(c,"BITOP NOT must be called with a single source key.");
return;
}
/* Lookup keys, and store pointers to the string objects into an array. */
numkeys = c->argc - 3;
src = zmalloc(sizeof(unsigned char*) * numkeys);
len = zmalloc(sizeof(long) * numkeys);
objects = zmalloc(sizeof(robj*) * numkeys);
for (j = 0; j < numkeys; j++) {
o = lookupKeyRead(c->db,c->argv[j+3]);
/* Handle non-existing keys as empty strings. */
if (o == NULL) {
objects[j] = NULL;
src[j] = NULL;
len[j] = 0;
minlen = 0;
continue;
}
/* Return an error if one of the keys is not a string. */
if (checkType(c,o,OBJ_STRING)) {
unsigned long i;
for (i = 0; i < j; i++) {
if (objects[i])
decrRefCount(objects[i]);
}
zfree(src);
zfree(len);
zfree(objects);
return;
}
objects[j] = getDecodedObject(o);
src[j] = objects[j]->ptr;
len[j] = sdslen(objects[j]->ptr);
if (len[j] > maxlen) maxlen = len[j];
if (j == 0 || len[j] < minlen) minlen = len[j];
}
/* Compute the bit operation, if at least one string is not empty. */
if (maxlen) {
res = (unsigned char*) sdsnewlen(NULL,maxlen);
unsigned char output, byte;
unsigned long i;
/* Fast path: as far as we have data for all the input bitmaps we
* can take a fast path that performs much better than the
* vanilla algorithm. On ARM we skip the fast path since it will
* result in GCC compiling the code using multiple-words load/store
* operations that are not supported even in ARM >= v6. */
j = 0;
#ifndef USE_ALIGNED_ACCESS
if (minlen >= sizeof(unsigned long)*4 && numkeys <= 16) {
unsigned long *lp[16];
unsigned long *lres = (unsigned long*) res;
/* Note: sds pointer is always aligned to 8 byte boundary. */
memcpy(lp,src,sizeof(unsigned long*)*numkeys);
memcpy(res,src[0],minlen);
/* Different branches per different operations for speed (sorry). */
if (op == BITOP_AND) {
while(minlen >= sizeof(unsigned long)*4) {
for (i = 1; i < numkeys; i++) {
lres[0] &= lp[i][0];
lres[1] &= lp[i][1];
lres[2] &= lp[i][2];
lres[3] &= lp[i][3];
lp[i]+=4;
}
lres+=4;
j += sizeof(unsigned long)*4;
minlen -= sizeof(unsigned long)*4;
}
} else if (op == BITOP_OR) {
while(minlen >= sizeof(unsigned long)*4) {
for (i = 1; i < numkeys; i++) {
lres[0] |= lp[i][0];
lres[1] |= lp[i][1];
lres[2] |= lp[i][2];
lres[3] |= lp[i][3];
lp[i]+=4;
}
lres+=4;
j += sizeof(unsigned long)*4;
minlen -= sizeof(unsigned long)*4;
}
} else if (op == BITOP_XOR) {
while(minlen >= sizeof(unsigned long)*4) {
for (i = 1; i < numkeys; i++) {
lres[0] ^= lp[i][0];
lres[1] ^= lp[i][1];
lres[2] ^= lp[i][2];
lres[3] ^= lp[i][3];
lp[i]+=4;
}
lres+=4;
j += sizeof(unsigned long)*4;
minlen -= sizeof(unsigned long)*4;
}
} else if (op == BITOP_NOT) {
while(minlen >= sizeof(unsigned long)*4) {
lres[0] = ~lres[0];
lres[1] = ~lres[1];
lres[2] = ~lres[2];
lres[3] = ~lres[3];
lres+=4;
j += sizeof(unsigned long)*4;
minlen -= sizeof(unsigned long)*4;
}
}
}
#endif
/* j is set to the next byte to process by the previous loop. */
for (; j < maxlen; j++) {
output = (len[0] <= j) ? 0 : src[0][j];
if (op == BITOP_NOT) output = ~output;
for (i = 1; i < numkeys; i++) {
byte = (len[i] <= j) ? 0 : src[i][j];
switch(op) {
case BITOP_AND: output &= byte; break;
case BITOP_OR: output |= byte; break;
case BITOP_XOR: output ^= byte; break;
}
}
res[j] = output;
}
}
for (j = 0; j < numkeys; j++) {
if (objects[j])
decrRefCount(objects[j]);
}
zfree(src);
zfree(len);
zfree(objects);
/* Store the computed value into the target key */
if (maxlen) {
o = createObject(OBJ_STRING,res);
setKey(c->db,targetkey,o);
notifyKeyspaceEvent(NOTIFY_STRING,"set",targetkey,c->db->id);
decrRefCount(o);
} else if (dbDelete(c->db,targetkey)) {
signalModifiedKey(c->db,targetkey);
notifyKeyspaceEvent(NOTIFY_GENERIC,"del",targetkey,c->db->id);
}
server.dirty++;
addReplyLongLong(c,maxlen); /* Return the output string length in bytes. */
}
/* BITCOUNT key [start end] */
void bitcountCommand(client *c) {
robj *o;
long start, end, strlen;
unsigned char *p;
char llbuf[LONG_STR_SIZE];
/* Lookup, check for type, and return 0 for non existing keys. */
if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL ||
checkType(c,o,OBJ_STRING)) return;
p = getObjectReadOnlyString(o,&strlen,llbuf);
/* Parse start/end range if any. */
if (c->argc == 4) {
if (getLongFromObjectOrReply(c,c->argv[2],&start,NULL) != C_OK)
return;
if (getLongFromObjectOrReply(c,c->argv[3],&end,NULL) != C_OK)
return;
/* Convert negative indexes */
if (start < 0 && end < 0 && start > end) {
addReply(c,shared.czero);
return;
}
if (start < 0) start = strlen+start;
if (end < 0) end = strlen+end;
if (start < 0) start = 0;
if (end < 0) end = 0;
if (end >= strlen) end = strlen-1;
} else if (c->argc == 2) {
/* The whole string. */
start = 0;
end = strlen-1;
} else {
/* Syntax error. */
addReply(c,shared.syntaxerr);
return;
}
/* Precondition: end >= 0 && end < strlen, so the only condition where
* zero can be returned is: start > end. */
if (start > end) {
addReply(c,shared.czero);
} else {
long bytes = end-start+1;
addReplyLongLong(c,redisPopcount(p+start,bytes));
}
}
/* BITPOS key bit [start [end]] */
void bitposCommand(client *c) {
robj *o;
long bit, start, end, strlen;
unsigned char *p;
char llbuf[LONG_STR_SIZE];
int end_given = 0;
/* Parse the bit argument to understand what we are looking for, set
* or clear bits. */
if (getLongFromObjectOrReply(c,c->argv[2],&bit,NULL) != C_OK)
return;
if (bit != 0 && bit != 1) {
addReplyError(c, "The bit argument must be 1 or 0.");
return;
}
/* If the key does not exist, from our point of view it is an infinite
* array of 0 bits. If the user is looking for the fist clear bit return 0,
* If the user is looking for the first set bit, return -1. */
if ((o = lookupKeyRead(c->db,c->argv[1])) == NULL) {
addReplyLongLong(c, bit ? -1 : 0);
return;
}
if (checkType(c,o,OBJ_STRING)) return;
p = getObjectReadOnlyString(o,&strlen,llbuf);
/* Parse start/end range if any. */
if (c->argc == 4 || c->argc == 5) {
if (getLongFromObjectOrReply(c,c->argv[3],&start,NULL) != C_OK)
return;
if (c->argc == 5) {
if (getLongFromObjectOrReply(c,c->argv[4],&end,NULL) != C_OK)
return;
end_given = 1;
} else {
end = strlen-1;
}
/* Convert negative indexes */
if (start < 0) start = strlen+start;
if (end < 0) end = strlen+end;
if (start < 0) start = 0;
if (end < 0) end = 0;
if (end >= strlen) end = strlen-1;
} else if (c->argc == 3) {
/* The whole string. */
start = 0;
end = strlen-1;
} else {
/* Syntax error. */
addReply(c,shared.syntaxerr);
return;
}
/* For empty ranges (start > end) we return -1 as an empty range does
* not contain a 0 nor a 1. */
if (start > end) {
addReplyLongLong(c, -1);
} else {
long bytes = end-start+1;
long pos = redisBitpos(p+start,bytes,bit);
/* If we are looking for clear bits, and the user specified an exact
* range with start-end, we can't consider the right of the range as
* zero padded (as we do when no explicit end is given).
*
* So if redisBitpos() returns the first bit outside the range,
* we return -1 to the caller, to mean, in the specified range there
* is not a single "0" bit. */
if (end_given && bit == 0 && pos == bytes*8) {
addReplyLongLong(c,-1);
return;
}
if (pos != -1) pos += start*8; /* Adjust for the bytes we skipped. */
addReplyLongLong(c,pos);
}
}
/* BITFIELD key subcommmand-1 arg ... subcommand-2 arg ... subcommand-N ...
*
* Supported subcommands:
*
* GET <type> <offset>
* SET <type> <offset> <value>
* INCRBY <type> <offset> <increment>
* OVERFLOW [WRAP|SAT|FAIL]
*/
struct bitfieldOp {
uint64_t offset; /* Bitfield offset. */
int64_t i64; /* Increment amount (INCRBY) or SET value */
int opcode; /* Operation id. */
int owtype; /* Overflow type to use. */
int bits; /* Integer bitfield bits width. */
int sign; /* True if signed, otherwise unsigned op. */
};
void bitfieldCommand(client *c) {
robj *o;
size_t bitoffset;
int j, numops = 0, changes = 0;
struct bitfieldOp *ops = NULL; /* Array of ops to execute at end. */
int owtype = BFOVERFLOW_WRAP; /* Overflow type. */
int readonly = 1;
size_t highest_write_offset = 0;
for (j = 2; j < c->argc; j++) {
int remargs = c->argc-j-1; /* Remaining args other than current. */
char *subcmd = c->argv[j]->ptr; /* Current command name. */
int opcode; /* Current operation code. */
long long i64 = 0; /* Signed SET value. */
int sign = 0; /* Signed or unsigned type? */
int bits = 0; /* Bitfield width in bits. */
if (!strcasecmp(subcmd,"get") && remargs >= 2)
opcode = BITFIELDOP_GET;
else if (!strcasecmp(subcmd,"set") && remargs >= 3)
opcode = BITFIELDOP_SET;
else if (!strcasecmp(subcmd,"incrby") && remargs >= 3)
opcode = BITFIELDOP_INCRBY;
else if (!strcasecmp(subcmd,"overflow") && remargs >= 1) {
char *owtypename = c->argv[j+1]->ptr;
j++;
if (!strcasecmp(owtypename,"wrap"))
owtype = BFOVERFLOW_WRAP;
else if (!strcasecmp(owtypename,"sat"))
owtype = BFOVERFLOW_SAT;
else if (!strcasecmp(owtypename,"fail"))
owtype = BFOVERFLOW_FAIL;
else {
addReplyError(c,"Invalid OVERFLOW type specified");
zfree(ops);
return;
}
continue;
} else {
addReply(c,shared.syntaxerr);
zfree(ops);
return;
}
/* Get the type and offset arguments, common to all the ops. */
if (getBitfieldTypeFromArgument(c,c->argv[j+1],&sign,&bits) != C_OK) {
zfree(ops);
return;
}
if (getBitOffsetFromArgument(c,c->argv[j+2],&bitoffset,1,bits) != C_OK){
zfree(ops);
return;
}
if (opcode != BITFIELDOP_GET) {
readonly = 0;
if (highest_write_offset < bitoffset + bits - 1)
highest_write_offset = bitoffset + bits - 1;
/* INCRBY and SET require another argument. */
if (getLongLongFromObjectOrReply(c,c->argv[j+3],&i64,NULL) != C_OK){
zfree(ops);
return;
}
}
/* Populate the array of operations we'll process. */
ops = zrealloc(ops,sizeof(*ops)*(numops+1));
ops[numops].offset = bitoffset;
ops[numops].i64 = i64;
ops[numops].opcode = opcode;
ops[numops].owtype = owtype;
ops[numops].bits = bits;
ops[numops].sign = sign;
numops++;
j += 3 - (opcode == BITFIELDOP_GET);
}
if (readonly) {
/* Lookup for read is ok if key doesn't exit, but errors
* if it's not a string. */
o = lookupKeyRead(c->db,c->argv[1]);
if (o != NULL && checkType(c,o,OBJ_STRING)) {
zfree(ops);
return;
}