From 62b8d2b4ebbee7a758065b87c6052a4354b84ed9 Mon Sep 17 00:00:00 2001 From: gio256 <102917377+gio256@users.noreply.github.com> Date: Fri, 8 Mar 2024 12:02:47 -0700 Subject: [PATCH] AbGroups/AbHom.v: prove is1bifunctor_ab_hom --- theories/Algebra/AbGroups/AbHom.v | 34 +++++++++++++++++++++++++++++++ 1 file changed, 34 insertions(+) diff --git a/theories/Algebra/AbGroups/AbHom.v b/theories/Algebra/AbGroups/AbHom.v index 98e3da60140..fcc5b53dfbd 100644 --- a/theories/Algebra/AbGroups/AbHom.v +++ b/theories/Algebra/AbGroups/AbHom.v @@ -63,12 +63,46 @@ Proof. by apply equiv_path_grouphomomorphism. Defined. +Global Instance is1functor_ab_hom01 `{Funext} {A : Group^op} + : Is1Functor (ab_hom A). +Proof. + nrapply Build_Is1Functor. + - intros B B' f g p phi. + apply equiv_path_grouphomomorphism; intro a; cbn. + exact (p (phi a)). + - intros B phi. + by apply equiv_path_grouphomomorphism. + - intros B C D f g phi. + by apply equiv_path_grouphomomorphism. +Defined. + +Global Instance is1functor_ab_hom10 `{Funext} {B : AbGroup@{u}} + : Is1Functor (flip (ab_hom : Group^op -> AbGroup -> AbGroup) B). +Proof. + nrapply Build_Is1Functor. + - intros A A' f g p phi. + apply equiv_path_grouphomomorphism; intro a; cbn. + exact (ap phi (p a)). + - intros A phi. + by apply equiv_path_grouphomomorphism. + - intros A C D f g phi. + by apply equiv_path_grouphomomorphism. +Defined. + Global Instance is0bifunctor_ab_hom `{Funext} : Is0Bifunctor (ab_hom : Group^op -> AbGroup -> AbGroup). Proof. rapply Build_Is0Bifunctor. Defined. +Global Instance is1bifunctor_ab_hom `{Funext} + : Is1Bifunctor (ab_hom : Group^op -> AbGroup -> AbGroup). +Proof. + rapply Build_Is1Bifunctor. + intros A A' f B B' g phi; cbn. + by apply equiv_path_grouphomomorphism. +Defined. + (** ** Properties of [ab_hom] *) (** Precomposition with a surjection is an embedding. *)