From 6eefc6d41ac379719aef4c60f26262141a17e611 Mon Sep 17 00:00:00 2001 From: Ali Caglayan Date: Wed, 24 Apr 2024 14:20:07 +0100 Subject: [PATCH] Symmetric Monoidal Categories and Twist Construction We define give a definition of symmetric monoidal categories and develop what we term the "twist construction" for building examples. The twist construction takes a symmetric braiding, a twist map A(BC) -> B(AC), and some extra axioms and produces a symmetric monoidal category. We give the cartesian symmetric monoidal structure as an application. Signed-off-by: Ali Caglayan --- theories/WildCat/Bifunctor.v | 4 +- theories/WildCat/Coproducts.v | 5 +- theories/WildCat/Monoidal.v | 734 +++++++++++++++++++++++++++++++++- theories/WildCat/Products.v | 528 ++++++++++++++++++++---- 4 files changed, 1188 insertions(+), 83 deletions(-) diff --git a/theories/WildCat/Bifunctor.v b/theories/WildCat/Bifunctor.v index bcfe757789f..dd6c4667ccc 100644 --- a/theories/WildCat/Bifunctor.v +++ b/theories/WildCat/Bifunctor.v @@ -103,14 +103,14 @@ Defined. Definition fmap10_is_fmap11 {A B C : Type} `{Is1Cat A, Is1Cat B, Is1Cat C} (F : A -> B -> C) `{!Is0Bifunctor F, !Is1Bifunctor F} {a0 a1 : A} (f : a0 $-> a1) (b : B) - : fmap11 F f (Id b) $== fmap10 F f b + : fmap11 F f (Id b) $== fmap10 F f b := (fmap_id _ _ $@R _) $@ cat_idl _. (** [fmap11] with left map the identity gives [fmap01]. *) Definition fmap01_is_fmap11 {A B C : Type} `{Is1Cat A, Is1Cat B, Is1Cat C} (F : A -> B -> C) `{!Is0Bifunctor F, !Is1Bifunctor F} (a : A) {b0 b1 : B} (g : b0 $-> b1) - : fmap11 F (Id a) g $== fmap01 F a g + : fmap11 F (Id a) g $== fmap01 F a g := (_ $@L fmap_id _ _) $@ cat_idr _. (** 2-functorial action *) diff --git a/theories/WildCat/Coproducts.v b/theories/WildCat/Coproducts.v index 7548ecc4c8f..34ad81b9829 100644 --- a/theories/WildCat/Coproducts.v +++ b/theories/WildCat/Coproducts.v @@ -2,7 +2,8 @@ Require Import Basics.Overture Basics.Tactics Basics.Decidable. Require Import Types.Bool. Require Import WildCat.Core WildCat.Equiv WildCat.Forall WildCat.NatTrans WildCat.Opposite WildCat.Products WildCat.Universe - WildCat.Yoneda WildCat.ZeroGroupoid WildCat.PointedCat. + WildCat.Yoneda WildCat.ZeroGroupoid WildCat.PointedCat + WildCat.Monoidal. (** * Categories with coproducts *) @@ -226,7 +227,7 @@ Lemma cate_coprod_assoc {A : Type} `{HasEquivs A} : cat_bincoprod x (cat_bincoprod y z) $<~> cat_bincoprod (cat_bincoprod x y) z. Proof. - exact (@cate_binprod_assoc A^op _ _ _ _ _ e x y z)^-1$. + exact (@associator_binprod A^op _ _ _ _ _ e x y z)^-1$. Defined. (** *** Binary coproduct functor *) diff --git a/theories/WildCat/Monoidal.v b/theories/WildCat/Monoidal.v index 7b145cc3dc5..e2e81366f07 100644 --- a/theories/WildCat/Monoidal.v +++ b/theories/WildCat/Monoidal.v @@ -1,8 +1,10 @@ -Require Import Basics.Overture. -Require Import Types.Forall. -Require Import WildCat.Core WildCat.Bifunctor WildCat.Prod WildCat.Equiv WildCat.NatTrans. +Require Import Basics.Overture Basics.Tactics Types.Forall. +Require Import WildCat.Core WildCat.Bifunctor WildCat.Prod WildCat.Equiv. +Require Import WildCat.NatTrans WildCat.Square. -(** * Monoidal 1-categories *) +(** * Monoidal Categories *) + +(** In this file we define monoidal categories and symmetric monoidal categories. *) (** ** Typeclasses for common diagrams *) @@ -12,10 +14,10 @@ Require Import WildCat.Core WildCat.Bifunctor WildCat.Prod WildCat.Equiv WildCat (** A natural equivalence witnessing the associativity of a bifunctor. *) Class Associator {A : Type} `{HasEquivs A} - (F : A -> A -> A) `{!Is0Bifunctor F, !Is1Bifunctor F} := { + (F : A -> A -> A) `{!Is0Bifunctor F, !Is1Bifunctor F} := { (** An isomorphism [associator] witnessing associativity of [F]. *) associator a b c : F a (F b c) $<~> F (F a b) c; - + (** The [associator] is a natural isomorphism. *) is1natural_associator_uncurried :: Is1Natural @@ -56,16 +58,52 @@ Arguments triangle_identity {A _ _ _ _ _} F {_ _ _} unit {_}. Class PentagonIdentity {A : Type} `{HasEquivs A} (F : A -> A -> A) `{!Is0Bifunctor F, !Is1Bifunctor F, !Associator F} - (unit : A) `{!LeftUnitor F unit, !RightUnitor F unit} - (** The pentagon identity for an associator and unitors. *) + (** The pentagon identity for an associator. *) := pentagon_identity a b c d : associator (F a b) c d $o associator a b (F c d) $== fmap10 F (associator a b c) d $o associator a (F b c) d $o fmap01 F a (associator b c d). Coercion pentagon_identity : PentagonIdentity >-> Funclass. -Arguments pentagon_identity {A _ _ _ _ _} F {_ _ _} unit {_}. +Arguments pentagon_identity {A _ _ _ _ _} F {_ _ _}. + +(** *** Braiding *) + +Class Braiding {A : Type} `{Is1Cat A} + (F : A -> A -> A) `{!Is0Bifunctor F, !Is1Bifunctor F} := { + (** A morphism [braid] witnessing the symmetry of [F]. *) + braid a b : F a b $-> F b a; + (** The [braid] is a natural transformation. *) + is1natural_braiding_uncurried + : Is1Natural + (uncurry F) + (uncurry (flip F)) + (fun '(a, b) => braid a b); +}. +Coercion braid : Braiding >-> Funclass. +Arguments braid {A _ _ _ _ F _ _ _} a b. -(** ** Definition *) +Class SymmetricBraiding {A : Type} `{Is1Cat A} + (F : A -> A -> A) `{!Is0Bifunctor F, !Is1Bifunctor F} := { + braiding_symmetricbraiding :: Braiding F; + braid_braid : forall a b, braid a b $o braid b a $== Id (F b a); +}. +(** We could have used [::>] in [braiding_symmetricbraiding] instead however due to bug https://github.com/coq/coq/issues/18971 the coercion isn't registered, so we have to register it manually instead. *) +Coercion braiding_symmetricbraiding : SymmetricBraiding >-> Braiding. +Arguments braid_braid {A _ _ _ _ F _ _ _} a b. + +(** *** Hexagon identity *) + +Class HexagonIdentity {A : Type} `{HasEquivs A} + (F : A -> A -> A) + `{!Is0Bifunctor F, !Is1Bifunctor F, !Associator F, !Braiding F} + (** The hexagon identity for an associator and a braiding. *) + := hexagon_identity a b c + : fmap10 F (braid b a) c $o associator b a c $o fmap01 F b (braid c a) + $== associator a b c $o braid (F b c) a $o associator b c a. +Coercion hexagon_identity : HexagonIdentity >-> Funclass. +Arguments hexagon_identity {A _ _ _ _ _} F {_ _}. + +(** ** Monoidal Categories *) (** A monoidal 1-category is a 1-category with equivalences together with the following: *) Class IsMonoidal (A : Type) `{HasEquivs A} @@ -87,5 +125,679 @@ Class IsMonoidal (A : Type) `{HasEquivs A} (** The triangle identity. *) cat_tensor_triangle_identity :: TriangleIdentity cat_tensor cat_tensor_unit; (** The pentagon identity. *) - cat_tensor_pentagon_identity :: PentagonIdentity cat_tensor cat_tensor_unit; + cat_tensor_pentagon_identity :: PentagonIdentity cat_tensor; }. + +(** TODO: Braided monoidal categories *) + +(** ** Symmetric Monoidal Categories *) + +(** A symmetric monoidal 1-category is a 1-category with equivalences together with the following: *) +Class IsSymmetricMonoidal (A : Type) `{HasEquivs A} + (** A binary operation [cat_tensor] called the tensor product. *) + (cat_tensor : A -> A -> A) + (** A unit object [cat_tensor_unit] called the tensor unit. *) + (cat_tensor_unit : A) + := { + (** A monoidal structure with [cat_tensor] and [cat_tensor_unit]. *) + issymmetricmonoidal_ismonoidal :: IsMonoidal A cat_tensor cat_tensor_unit; + (** A natural transformation [braid] witnessing the symmetry of the tensor product such that [braid] is its own inverse. *) + cat_symm_tensor_braiding :: SymmetricBraiding cat_tensor; + (** The hexagon identity. *) + cat_symm_tensor_hexagon :: HexagonIdentity cat_tensor; +}. + +(** ** Theory about [SymmetricBraid] *) + +Section SymmetricBraid. + Context {A : Type} {F : A -> A -> A} `{SymmetricBraiding A F, !HasEquivs A}. + + (** [braid] is its own inverse and therefore an equivalence. *) + Local Instance catie_braid a b : CatIsEquiv (braid a b) + := catie_adjointify (braid a b) (braid b a) (braid_braid a b) (braid_braid b a). + + (** [braide] is the bundled equivalence whose underlying map is [braid]. *) + Local Definition braide a b + : F a b $<~> F b a + := Build_CatEquiv (braid a b). + + Local Definition moveL_braidL a b c f (g : c $-> _) + : braid a b $o f $== g -> f $== braid b a $o g. + Proof. + intros p. + apply (cate_monic_equiv (braide a b)). + refine ((cate_buildequiv_fun _ $@R _) $@ p $@ _ $@ cat_assoc _ _ _). + refine ((cat_idl _)^$ $@ (_^$ $@R _)). + refine ((cate_buildequiv_fun _ $@R _) $@ _). + apply braid_braid. + Defined. + + Local Definition moveL_braidR a b c f (g : _ $-> c) + : f $o braid a b $== g -> f $== g $o braid b a. + Proof. + intros p. + apply (cate_epic_equiv (braide a b)). + refine (_ $@ (cat_assoc _ _ _)^$). + refine (_ $@ (_ $@L ((_ $@L cate_buildequiv_fun _) $@ _)^$)). + 2: apply braid_braid. + refine ((_ $@L _) $@ _ $@ (cat_idr _)^$). + 1: apply cate_buildequiv_fun. + exact p. + Defined. + + Local Definition moveR_braidL a b c f (g : c $-> _) + : f $== braid b a $o g -> braid a b $o f $== g. + Proof. + intros p; symmetry; apply moveL_braidL; symmetry; exact p. + Defined. + + Local Definition moveR_braidR a b c f (g : _ $-> c) + : f $== g $o braid b a -> f $o braid a b $== g. + Proof. + intros p; symmetry; apply moveL_braidR; symmetry; exact p. + Defined. + + Local Definition moveL_fmap01_braidL a b c d f (g : d $-> _) + : fmap01 F a (braid b c) $o f $== g + -> f $== fmap01 F a (braid c b) $o g. + Proof. + intros p. + apply (cate_monic_equiv (emap01 F a (braide b c))). + refine (_ $@ cat_assoc _ _ _). + refine (_ $@ (_ $@R _)). + 2: { refine (_ $@ (_^$ $@R _)). + 2: apply cate_buildequiv_fun. + refine ((fmap_id _ _)^$ $@ fmap2 _ _ $@ fmap_comp _ _ _). + refine ((_ $@R _) $@ _)^$. + 1: apply cate_buildequiv_fun. + apply braid_braid. } + refine ((_ $@R _) $@ p $@ (cat_idl _)^$). + refine (_ $@ fmap2 _ _); + apply cate_buildequiv_fun. + Defined. + + Local Definition moveL_fmap01_braidR a b c d f (g : _ $-> d) + : f $o fmap01 F a (braid b c) $== g + -> f $== g $o fmap01 F a (braid c b). + Proof. + intros p. + apply (cate_epic_equiv (emap01 F a (braide b c))). + refine (_ $@ (cat_assoc _ _ _)^$). + refine (_ $@ (_ $@L _)). + 2: { refine (_^$ $@ (_ $@L _^$)). + 2: apply cate_buildequiv_fun. + refine ((fmap_comp _ _ _)^$ $@ fmap2 _ _ $@ fmap_id _ _). + refine ((_ $@L _) $@ _). + 1: apply cate_buildequiv_fun. + apply braid_braid. } + refine ((_ $@L _) $@ p $@ (cat_idr _)^$). + refine (_ $@ fmap2 _ _); + apply cate_buildequiv_fun. + Defined. + + Local Definition moveR_fmap01_braidL a b c d f (g : d $-> _) + : f $== fmap01 F a (braid c b) $o g + -> fmap01 F a (braid b c) $o f $== g. + Proof. + intros p; symmetry; apply moveL_fmap01_braidL; symmetry; exact p. + Defined. + + Local Definition moveR_fmap01_braidR a b c d f (g : _ $-> d) + : f $== g $o fmap01 F a (braid c b) + -> f $o fmap01 F a (braid b c) $== g. + Proof. + intros p; symmetry; apply moveL_fmap01_braidR; symmetry; exact p. + Defined. + + Local Definition moveL_fmap01_fmap01_braidL a b c d e f (g : e $-> _) + : fmap01 F a (fmap01 F b (braid c d)) $o f $== g + -> f $== fmap01 F a (fmap01 F b (braid d c)) $o g. + Proof. + intros p. + apply (cate_monic_equiv (emap01 F a (emap01 F b (braide c d)))). + refine (_ $@ cat_assoc _ _ _). + refine (_ $@ (_ $@R _)). + 2: { refine (_ $@ (_^$ $@R _)). + 2: apply cate_buildequiv_fun. + refine ((fmap_id _ _)^$ $@ fmap2 _ _ $@ fmap_comp _ _ _). + refine (_ $@ (_^$ $@R _)). + 2: apply cate_buildequiv_fun. + refine ((fmap_id _ _)^$ $@ fmap2 _ _ $@ fmap_comp _ _ _). + refine ((_ $@R _) $@ _)^$. + 1: apply cate_buildequiv_fun. + apply braid_braid. } + refine ((_ $@R _) $@ p $@ (cat_idl _)^$). + refine (cate_buildequiv_fun _ $@ fmap02 _ _ _). + refine (cate_buildequiv_fun _ $@ fmap02 _ _ _). + apply cate_buildequiv_fun. + Defined. + + Local Definition moveL_fmap01_fmap01_braidR a b c d e f (g : _ $-> e) + : f $o fmap01 F a (fmap01 F b (braid c d)) $== g + -> f $== g $o fmap01 F a (fmap01 F b (braid d c)). + Proof. + intros p. + apply (cate_epic_equiv (emap01 F a (emap01 F b (braide c d)))). + refine (_ $@ (cat_assoc _ _ _)^$). + refine (_ $@ (_ $@L _)). + 2: { refine (_^$ $@ (_ $@L _^$)). + 2: apply cate_buildequiv_fun. + refine ((fmap_comp _ _ _)^$ $@ fmap2 _ _ $@ fmap_id _ _). + refine ((_ $@L _) $@ _). + 1: apply cate_buildequiv_fun. + refine ((fmap_comp _ _ _)^$ $@ fmap2 _ _ $@ fmap_id _ _). + refine ((_ $@L _) $@ _). + 1: apply cate_buildequiv_fun. + apply braid_braid. } + refine ((_ $@L _) $@ p $@ (cat_idr _)^$). + refine (cate_buildequiv_fun _ $@ fmap02 _ _ _). + refine (cate_buildequiv_fun _ $@ fmap02 _ _ _). + apply cate_buildequiv_fun. + Defined. + + Local Definition moveR_fmap01_fmap01_braidL a b c d e f (g : e $-> _) + : f $== fmap01 F a (fmap01 F b (braid d c)) $o g + -> fmap01 F a (fmap01 F b (braid c d)) $o f $== g. + Proof. + intros p; symmetry; apply moveL_fmap01_fmap01_braidL; symmetry; exact p. + Defined. + + Local Definition moveR_fmap01_fmap01_braidR a b c d e f (g : _ $-> e) + : f $== g $o fmap01 F a (fmap01 F b (braid d c)) + -> f $o fmap01 F a (fmap01 F b (braid c d)) $== g. + Proof. + intros p; symmetry; apply moveL_fmap01_fmap01_braidR; symmetry; exact p. + Defined. + + Local Definition braid_nat {a b c d} (f : a $-> c) (g : b $-> d) + : braid c d $o fmap11 F f g $== fmap11 F g f $o braid a b. + Proof. + refine (is1natural_braiding_uncurried (a, b) (c, d) (f, g) $@ _). + refine (_ $@R _). + rapply fmap11_coh. + Defined. + + Local Definition braid_nat_l {a b c} (f : a $-> b) + : braid b c $o fmap10 F f c $== fmap01 F c f $o braid a c. + Proof. + refine ((_ $@L _^$) $@ _ $@ (_ $@R _)). + - rapply fmap10_is_fmap11. + - exact (is1natural_braiding_uncurried (a, c) (b, c) (f, Id _)). + - exact ((fmap11_coh _ _ _)^$ $@ fmap01_is_fmap11 _ c f). + Defined. + + (** This is just the inverse of above. *) + Local Definition braid_nat_r {a b c} (g : b $-> c) + : braid a c $o fmap01 F a g $== fmap10 F g a $o braid a b. + Proof. + refine ((_ $@L _^$) $@ _ $@ (_ $@R _)). + - rapply fmap01_is_fmap11. + - exact (is1natural_braiding_uncurried (a, b) (a, c) (Id _ , g)). + - exact ((fmap11_coh _ _ _)^$ $@ fmap10_is_fmap11 _ g a). + Defined. + +End SymmetricBraid. + +(** ** Building Symmetric Monoidal Categories *) + +(** The following construction is what we call the "twist construction". It is a way to build a symmetric monoidal category from simpler pieces than the axioms ask for. + +The core observation is that the associator can be broken up into a [braid] and what we call a [twist] map. The twist map takes a right associated triple [(A, (B, C))] and swaps the first two factors [(B, (A, C)]. Together with functoriality of the tensor and the braiding, here termed [braid] we can simplify the axioms we ask for. + +For instance, the hexagon identity is about associators, but if we unfold the definition and simplify the diagram, we get a diagram about only twists and braids. + +This means in practice, you can show a category has a symmetric monoidal structure by proving some simpler axioms. This idea has been used in TriJoin.v to show the associativity of join for example. *) + +Section TwistConstruction. + (** The aim of this section is to build a symmetric monoidal category. We do this piecewise so that the separate steps are useful in and of themselves. + + Our basic starting assumption is that we have a category with equivalences, a bifunctor called the tensor product, and a unit object.*) + Context (A : Type) `{HasEquivs A} + (cat_tensor : A -> A -> A) (cat_tensor_unit : A) + `{!Is0Bifunctor cat_tensor, !Is1Bifunctor cat_tensor} + + (** Next we postulate the existence of a [braid] map. This takes a tensor pair and swaps the factors. We also postulate that [braid] is natural in both factors and self-inverse. *) + (braid : SymmetricBraiding cat_tensor) + + (** We postulate the existence of a [twist] map. This takes a right associated triple [(A, (B, C))] and swaps the first two factors [(B, (A, C)]. We also postulate that [twist] is natural in all three factors and self-inverse. *) + (twist : forall a b c, cat_tensor a (cat_tensor b c) $-> cat_tensor b (cat_tensor a c)) + (twist_twist : forall a b c, twist a b c $o twist b a c $== Id _) + (twist_nat : forall a a' b b' c c' (f : a $-> a') (g : b $-> b') (h : c $-> c'), + twist a' b' c' $o fmap11 cat_tensor f (fmap11 cat_tensor g h) + $== fmap11 cat_tensor g (fmap11 cat_tensor f h) $o twist a b c) + + (** We assume that there is a natural isomorphism [right_unitor] witnessing the right unit law. The left unit law will be derived from this one. We also assume a coherence called [twist_unitor] which determines how the right_unitor interacts with [braid] and [twist]. This is the basis of the triangle axiom. *) + (right_unitor : RightUnitor cat_tensor cat_tensor_unit) + (twist_unitor : forall a b, fmap01 cat_tensor a (right_unitor b) + $== braid b a $o fmap01 cat_tensor b (right_unitor a) $o twist a b cat_tensor_unit) + + (** The hexagon identity is about the interaction of associators and braids. We will derive this axiom from an analogous one for twists and braids. *) + (twist_hexagon : forall a b c, + fmap01 cat_tensor c (braid b a) $o twist b c a $o fmap01 cat_tensor b (braid a c) + $== twist a c b $o fmap01 cat_tensor a (braid b c) $o twist b a c) + + (** The 9-gon identity. TODO: explain this *) + (twist_9_gon : forall a b c d, + fmap01 cat_tensor c (braid (cat_tensor a b) d) + $o twist (cat_tensor a b) c d + $o braid (cat_tensor c d) (cat_tensor a b) + $o twist a (cat_tensor c d) b + $o fmap01 cat_tensor a (braid b (cat_tensor c d)) + $== fmap01 cat_tensor c (twist a d b) + $o fmap01 cat_tensor c (fmap01 cat_tensor a (braid b d)) + $o twist a c (cat_tensor b d) + $o fmap01 cat_tensor a (twist b c d)) + . + + (** *** Setup *) + + (** Before starting the proofs, we need to setup some useful definitions and helpful lemmas for working with diagrams. *) + + (** We give notations and abbreviations to the morphisms that will appear in diagrams. This helps us read the goal and understand what is happening, otherwise it is too verbose. *) + Declare Scope monoidal_scope. + Local Infix "⊗" := cat_tensor (at level 40) : monoidal_scope. + Local Infix "⊗R" := (fmap01 cat_tensor) (at level 40) : monoidal_scope. + Local Infix "⊗L" := (fmap10 cat_tensor) (at level 40) : monoidal_scope. + Local Notation "f ∘ g" := (f $o g) (at level 61, left associativity, format "f '/' '∘' g") : monoidal_scope. + Local Notation "f $== g :> A" := (GpdHom (A := A) f g) + (at level 80, format "'[v' '[v' f ']' '/' $== '/' '[v' g ']' '/' :> '[' A ']' ']'") + : long_path_scope. + Local Open Scope monoidal_scope. + + (** [twist] is an equivalence which we will call [twiste]. *) + Local Definition twiste a b c + : cat_tensor a (cat_tensor b c) $<~> cat_tensor b (cat_tensor a c) + := cate_adjointify (twist a b c) (twist b a c) + (twist_twist a b c) (twist_twist b a c). + + (** *** Finer naturality *) + + (** The naturality postulates we have for [twist] are natural in all their arguments similtaneously. We show the finer naturality of [twist] in each argument separately as this becomes more useful in practice. *) + + Local Definition twist_nat_l {a a'} (f : a $-> a') b c + : twist a' b c $o fmap10 cat_tensor f (cat_tensor b c) + $== fmap01 cat_tensor b (fmap10 cat_tensor f c) $o twist a b c. + Proof. + refine ((_ $@L _^$) $@ twist_nat a a' b b c c f (Id _) (Id _) $@ (_ $@R _)). + - refine (fmap12 _ _ _ $@ fmap10_is_fmap11 _ _ _). + rapply fmap11_id. + - refine (fmap12 _ _ _ $@ fmap01_is_fmap11 _ _ _). + rapply fmap10_is_fmap11. + Defined. + + Local Definition twist_nat_m a {b b'} (g : b $-> b') c + : twist a b' c $o fmap01 cat_tensor a (fmap10 cat_tensor g c) + $== fmap10 cat_tensor g (cat_tensor a c) $o twist a b c. + Proof. + refine ((_ $@L _^$) $@ twist_nat a a b b' c c (Id _) g (Id _) $@ (_ $@R _)). + - refine (fmap12 _ _ _ $@ fmap01_is_fmap11 _ _ _). + rapply fmap10_is_fmap11. + - refine (fmap12 _ _ _ $@ fmap10_is_fmap11 _ _ _). + rapply fmap11_id. + Defined. + + Local Definition twist_nat_r a b {c c'} (h : c $-> c') + : twist a b c' $o fmap01 cat_tensor a (fmap01 cat_tensor b h) + $== fmap01 cat_tensor b (fmap01 cat_tensor a h) $o twist a b c. + Proof. + refine ((_ $@L _^$) $@ twist_nat a a b b c c' (Id _) (Id _) h $@ (_ $@R _)). + - refine (fmap12 _ _ _ $@ fmap01_is_fmap11 _ _ _). + rapply fmap01_is_fmap11. + - refine (fmap12 _ _ _ $@ fmap01_is_fmap11 _ _ _). + rapply fmap01_is_fmap11. + Defined. + + (** *** Movement lemmas *) + + (** Here we collect lemmas about moving morphisms around in a diagram. We could have created [cate_moveL_eM]-style lemmas for [CatIsEquiv] but this leads to a lot of unnecessary unfolding and duplication. It is typically easier to use a hand crafted lemma for each situation. *) + + (** TODO: A lot of these proofs are copy and pasted between lemmas. We need to work out an efficient way of proving them. *) + + (** **** Moving [twist] *) + + Local Definition moveL_twistL a b c d f (g : d $-> _) + : twist a b c $o f $== g -> f $== twist b a c $o g. + Proof. + intros p. + apply (cate_monic_equiv (twiste a b c)). + nrefine ((cate_buildequiv_fun _ $@R _) $@ p $@ _ $@ cat_assoc _ _ _). + refine ((cat_idl _)^$ $@ (_^$ $@R _)). + refine ((cate_buildequiv_fun _ $@R _) $@ _). + apply twist_twist. + Defined. + + Local Definition moveL_twistR a b c d f (g : _ $-> d) + : f $o twist a b c $== g -> f $== g $o twist b a c. + Proof. + intros p. + apply (cate_epic_equiv (twiste a b c)). + refine (_ $@ (cat_assoc _ _ _)^$). + refine (_ $@ (_ $@L ((_ $@L cate_buildequiv_fun _) $@ _)^$)). + 2: apply twist_twist. + refine ((_ $@L _) $@ _ $@ (cat_idr _)^$). + 1: apply cate_buildequiv_fun. + exact p. + Defined. + + Local Definition moveR_twistL a b c d f (g : d $-> _) + : f $== twist b a c $o g -> twist a b c $o f $== g. + Proof. + intros p; symmetry; apply moveL_twistL; symmetry; exact p. + Defined. + + Local Definition moveR_twistR a b c d f (g : _ $-> d) + : f $== g $o twist b a c -> f $o twist a b c $== g. + Proof. + intros p; symmetry; apply moveL_twistR; symmetry; exact p. + Defined. + + Local Definition moveL_fmap01_twistL a b c d e f (g : e $-> _) + : fmap01 cat_tensor a (twist b c d) $o f $== g + -> f $== fmap01 cat_tensor a (twist c b d) $o g. + Proof. + intros p. + apply (cate_monic_equiv (emap01 cat_tensor a (twiste b c d))). + refine (_ $@ cat_assoc _ _ _). + refine (_ $@ (_ $@R _)). + 2: { refine (_ $@ (_^$ $@R _)). + 2: apply cate_buildequiv_fun. + refine ((fmap_id _ _)^$ $@ fmap2 _ _ $@ fmap_comp _ _ _). + refine (_^$ $@ (_^$ $@R _)). + 2: apply cate_buildequiv_fun. + apply twist_twist. } + refine ((_ $@R _) $@ p $@ (cat_idl _)^$). + refine (cate_buildequiv_fun _ $@ fmap02 _ _ _). + apply cate_buildequiv_fun. + Defined. + + Local Definition moveL_fmap01_twistR a b c d e f (g : _ $-> e) + : f $o fmap01 cat_tensor a (twist b c d) $== g + -> f $== g $o fmap01 cat_tensor a (twist c b d). + Proof. + intros p. + apply (cate_epic_equiv (emap01 cat_tensor a (twiste b c d))). + refine (_ $@ (cat_assoc _ _ _)^$). + refine (_ $@ (_ $@L _)). + 2: { refine (_^$ $@ (_ $@L _^$)). + 2: apply cate_buildequiv_fun. + refine ((fmap_comp _ _ _)^$ $@ fmap2 _ _ $@ fmap_id _ _). + refine ((_ $@L _) $@ _). + 1: apply cate_buildequiv_fun. + apply twist_twist. } + refine ((_ $@L _) $@ p $@ (cat_idr _)^$). + refine (cate_buildequiv_fun _ $@ fmap02 _ _ _). + apply cate_buildequiv_fun. + Defined. + + Local Definition moveR_fmap01_twistL a b c d e f (g : e $-> _) + : f $== fmap01 cat_tensor a (twist c b d) $o g + -> fmap01 cat_tensor a (twist b c d) $o f $== g. + Proof. + intros p; symmetry; apply moveL_fmap01_twistL; symmetry; exact p. + Defined. + + Local Definition moveR_fmap01_twistR a b c d e f (g : _ $-> e) + : f $== g $o fmap01 cat_tensor a (twist c b d) + -> f $o fmap01 cat_tensor a (twist b c d) $== g. + Proof. + intros p; symmetry; apply moveL_fmap01_twistR; symmetry; exact p. + Defined. + + (** *** The associator *) + + (** Using [braide] and [twiste] we can build an associator. *) + Local Definition associator_twist' a b c + : cat_tensor a (cat_tensor b c) $<~> cat_tensor (cat_tensor a b) c. + Proof. + (** We can build the associator out of [braide] and [twiste]. *) + refine (braide _ _ $oE _). + nrefine (twiste _ _ _ $oE _). + exact (emap01 cat_tensor a (braide _ _)). + Defined. + + (** We would like to be able to unfold [associator_twist'] to the underlying morphisms. We use this lemma to make that process easier. *) + Local Definition associator_twist'_unfold a b c + : cate_fun (associator_twist' a b c) + $== braid c (cat_tensor a b) $o (twist a c b $o fmap01 cat_tensor a (braid b c)). + Proof. + refine (cate_buildequiv_fun _ $@ (_ $@@ cate_buildequiv_fun _)). + nrefine (cate_buildequiv_fun _ $@ (_ $@@ cate_buildequiv_fun _)). + refine (cate_buildequiv_fun _ $@ fmap2 _ _). + apply cate_buildequiv_fun. + Defined. + + (** Now we can use [associator_twist'] and show that it is a natural equivalence in each variable. *) + Local Instance associator_twist : Associator cat_tensor. + Proof. + snrapply Build_Associator. + - exact associator_twist'. + - simpl; intros [[a b] c] [[a' b'] c'] [[f g] h]; simpl in f, g, h. + (** To prove naturality it will be easier to reason about squares. *) + change (?w $o ?x $== ?y $o ?z) with (Square z w x y). + (** First we remove all the equivalences from the equation. *) + nrapply hconcatL. + 1: apply associator_twist'_unfold. + nrapply hconcatR. + 2: apply associator_twist'_unfold. + (** The first square involving [braid] on its own is a naturality square. *) + nrapply vconcat. + 2: rapply braid_nat. + (** The second square is just the naturality of twist. *) + nrapply vconcat. + 2: apply twist_nat. + (** We rewrite one of the edges to make sure a functor application is grouped together. *) + nrapply vconcatL. + { refine ((cat_assoc _ _ _)^$ $@ (_^$ $@R _)). + rapply fmap_comp. } + (** This allows us to compose with bifunctor coherence on one side. *) + nrapply hconcat. + 1: rapply fmap11_coh. + (** Leaving us with a square with a functor application. *) + rapply fmap_square. + (** We are finally left with the naturality of braid. *) + apply braid_nat. + Defined. + + (** We abbreviate the associator to [α] for the remainder of the section. *) + Local Notation α := associator_twist. + + (** *** Unitors *) + + (** Since we assume the [right_unitor] exists, we can derive the [left_unitor] from it together with [braid]. *) + Local Instance left_unitor_twist : LeftUnitor cat_tensor cat_tensor_unit. + Proof. + snrapply Build_NatEquiv'. + - snrapply Build_NatTrans. + + exact (fun a => right_unitor a $o braid cat_tensor_unit a). + + intros a b f. + change (?w $o ?x $== ?y $o ?z) with (Square z w x y). + nrapply vconcat. + 2: rapply (isnat right_unitor f). + nrapply vconcatL. + 1: symmetry; rapply fmap01_is_fmap11. + nrapply vconcatR. + 2: symmetry; rapply fmap10_is_fmap11. + rapply braid_nat. + - intros a. + rapply compose_catie'. + rapply catie_braid. + Defined. + + (** *** Triangle *) + + (** The triangle identity can easily be proven by rearranging the diagram, cancelling and using naturality of [braid]. *) + Local Instance triangle_twist : TriangleIdentity cat_tensor cat_tensor_unit. + Proof. + intros a b. + refine (_ $@ (_ $@L _)^$). + 2: apply associator_twist'_unfold. + refine (fmap02 _ a (cate_buildequiv_fun _) $@ _); cbn. + refine (fmap01_comp _ _ _ _ $@ _). + do 2 refine (_ $@ cat_assoc _ _ _). + refine ((twist_unitor _ _ $@ (_ $@R _)) $@R _). + apply braid_nat_r. + Defined. + + (** *** Pentagon *) + + Local Open Scope long_path_scope. + + Local Instance pentagon_twist : PentagonIdentity cat_tensor. + Proof. + clear twist_unitor right_unitor cat_tensor_unit. + intros a b c d. + refine ((_ $@@ _) $@ _ $@ ((fmap02 _ _ _ $@ _)^$ $@@ (_ $@@ (fmap20 _ _ _ $@ _))^$)). + 1,2,4,6,7: apply associator_twist'_unfold. + 2: refine (fmap01_comp _ _ _ _ $@ (_ $@L (fmap01_comp _ _ _ _))). + 2: refine (fmap10_comp _ _ _ _ $@ (_ $@L (fmap10_comp _ _ _ _))). + (** We use a notation defined above that shows the base type of the groupoid hom and formats the equation in a way that is easier to read. *) + (** Normalize brackets on LHS *) + refine (cat_assoc _ _ _ $@ _). + refine (_ $@L (cat_assoc _ _ _) $@ _). + do 4 refine ((cat_assoc _ _ _)^$ $@ _). + (** Normalize brackets on RHS *) + refine (_ $@ (((cat_assoc _ _ _) $@R _) $@R _)). + do 2 refine (_ $@ ((cat_assoc _ _ _) $@R _)). + do 2 refine (_ $@ cat_assoc _ _ _). + (** Cancel two braids next to eachother. *) + apply moveL_fmap01_fmap01_braidR. + apply moveL_fmap01_twistR. + refine (_ $@ (cat_assoc _ _ _)^$). + refine (_ $@ ((_ $@L _) $@ cat_idr _)^$). + 2: refine ((fmap01_comp _ _ _ _)^$ $@ fmap02 _ _ _ $@ fmap01_id _ _ _). + 2: apply braid_braid. + (** *) + apply moveL_twistR. + refine (_ $@ (cat_assoc _ _ _)^$). + refine (_ $@ (_ $@L _)). + 2: apply braid_nat_r. + refine (_ $@ cat_assoc _ _ _). + apply moveL_fmap01_fmap01_braidR. + refine (_ $@ (cat_assoc _ _ _)^$). + refine (_ $@ (_ $@L _)). + 2: apply braid_nat_r. + refine (_ $@ cat_assoc _ _ _). + apply moveL_fmap01_twistR. + refine (_ $@ _). + 2: apply braid_nat_r. + (** Putting things back. *) + apply moveR_fmap01_twistR. + apply moveR_fmap01_fmap01_braidR. + apply moveR_twistR. + apply moveR_fmap01_twistR. + (** There are two braids on the RHS of the LHS that can be swapped. *) + refine (cat_assoc _ _ _ $@ _). + refine ((_ $@L _) $@ _). + 1: refine ((fmap01_comp _ _ _ _)^$ $@ fmap02 _ _ _ $@ fmap01_comp _ _ _ _). + 1: apply braid_nat_r. + refine ((cat_assoc _ _ _)^$ $@ _). + apply moveR_fmap01_braidR. + (** Naturality of twist on the RHS of the LHS. *) + refine (cat_assoc _ _ _ $@ _). + refine ((_ $@L _) $@ _). + 1: apply twist_nat_m. + refine ((cat_assoc _ _ _)^$ $@ _). + (** Moving some things to the RHS so that we can braid and cancel on the LHS. *) + apply moveR_twistR. + refine (cat_assoc _ _ _ $@ _). + refine ((_ $@L _) $@ _). + 1: apply braid_nat_l. + refine ((cat_assoc _ _ _)^$ $@ _). + apply moveR_braidR. + refine (cat_assoc _ _ _ $@ _). + refine ((_ $@L _) $@ cat_idr _ $@ _). + 1: refine ((fmap01_comp _ _ _ _)^$ $@ fmap02 _ _ _ $@ fmap01_id _ _ _). + 1: apply braid_braid. + apply moveL_braidR. + apply moveL_twistR. + apply moveL_fmap01_braidR. + (** We are almost at the desired 9-gon. Now we cancel the inner braid on the LHS. *) + do 4 refine (_ $@ (cat_assoc _ _ _)^$). + do 3 refine (cat_assoc _ _ _ $@ _). + refine (_ $@L _). + apply moveR_twistL. + do 4 refine (_ $@ cat_assoc _ _ _). + refine ((cat_assoc _ _ _)^$ $@ _). + (** Now we move terms around in order to get a homotopy in [a ⊗ (b ⊗ (d ⊗ c)) $-> d ⊗ (c ⊗ (a ⊗ b))]. *) + apply moveL_fmap01_twistR. + apply moveL_twistR. + do 2 refine (_ $@ (cat_assoc _ _ _)^$). + do 3 refine (cat_assoc _ _ _ $@ _). + apply moveL_twistL. + refine (_ $@ cat_assoc _ _ _). + do 4 refine ((cat_assoc _ _ _)^$ $@ _). + apply moveR_twistR. + apply moveR_fmap01_twistR. + do 3 refine (_ $@ (cat_assoc _ _ _)^$). + do 2 refine (cat_assoc _ _ _ $@ _). + apply moveL_fmap01_braidL. + do 2 refine (_ $@ cat_assoc _ _ _). + do 3 refine ((cat_assoc _ _ _)^$ $@ _). + (** And finally, this is the 9-gon we asked for. *) + apply twist_9_gon. + Defined. + + Local Close Scope long_path_scope. + + (** *** Hexagon *) + + Local Instance hexagon_twist : HexagonIdentity cat_tensor. + Proof. + intros a b c; simpl. + refine (((_ $@L _) $@R _) $@ _ $@ (_ $@@ (_ $@R _))^$). + 1,3,4: apply associator_twist'_unfold. + do 2 refine (((cat_assoc _ _ _)^$ $@R _) $@ _). + refine (cat_assoc _ _ _ $@ (_ $@L _) $@ _). + { refine ((fmap_comp _ _ _)^$ $@ fmap2 _ _ $@ fmap_id _ _). + apply braid_braid. } + refine (cat_idr _ $@ _). + refine (_ $@ cat_assoc _ _ _). + refine (_ $@ ((cat_assoc _ _ _)^$ $@R _)). + refine (_ $@ (((cat_idr _)^$ $@ (_ $@L _^$)) $@R _)). + 2: apply braid_braid. + refine (((braid_nat_r _)^$ $@R _) $@ _). + refine (cat_assoc _ _ _ $@ (_ $@L _) $@ (cat_assoc _ _ _)^$). + refine (_ $@ cat_assoc _ _ _). + apply moveL_fmap01_braidR. + apply twist_hexagon. + Defined. + + (** *** Conclusion *) + + (** In conclusion, we have proven the following: *) + + (** There is a monoidal structure on [A]. *) + Local Instance ismonoidal_twist + : IsMonoidal A cat_tensor cat_tensor_unit + := {}. + + (** There is a symmetric monoidal category on [A]. *) + Local Instance issymmetricmonoidal_twist + : IsSymmetricMonoidal A cat_tensor cat_tensor_unit + := {}. + + (** TODO: WIP *) + + (** Here is a hexagon involving only twist *) + Definition twist_hex' a b c d + : fmap01 cat_tensor c (twist a b d) + $o twist a c (cat_tensor b d) + $o fmap01 cat_tensor a (twist b c d) + $== twist b c (cat_tensor a d) + $o fmap01 cat_tensor b (twist a c d) + $o twist a b (cat_tensor c d). + Proof. + pose proof (twist_hexagon c a d $@ cat_assoc _ _ _) as p. + apply moveR_twistL in p. + apply moveR_fmap01_braidL in p. + apply (fmap02 cat_tensor b) in p. + refine (_ $@ ((_ $@L p) $@R _)); clear p. + apply moveL_twistR. + apply moveL_twistL. + refine (_ $@ (fmap01_comp _ _ _ _)^$). + (** TODO simplify *) + apply moveR_twistL. + refine (_ $@ cat_assoc _ _ _). + Abort. + +End TwistConstruction. diff --git a/theories/WildCat/Products.v b/theories/WildCat/Products.v index 1e54cd998d8..c50ab4ca525 100644 --- a/theories/WildCat/Products.v +++ b/theories/WildCat/Products.v @@ -1,8 +1,9 @@ Require Import Basics.Equivalences Basics.Overture Basics.Tactics. -Require Import Types.Bool Types.Prod. +Require Import Types.Bool Types.Prod Types.Forall. Require Import WildCat.Bifunctor WildCat.Core WildCat.Equiv WildCat.EquivGpd WildCat.Forall WildCat.NatTrans WildCat.Opposite - WildCat.Universe WildCat.Yoneda WildCat.ZeroGroupoid. + WildCat.Universe WildCat.Yoneda WildCat.ZeroGroupoid + WildCat.Monoidal. (** * Categories with products *) @@ -389,40 +390,6 @@ Proof. exact ((cat_assoc _ _ _)^$ $@ r (inr j) $@ cat_assoc _ _ _). Defined. -(** *** Symmetry of binary products *) - -Section Symmetry. - - (** The requirement of having all binary products can be weakened further to having specific binary products, but it is not clear this is a useful generality. *) - Context {A : Type} `{HasEquivs A} `{!HasBinaryProducts A}. - - Definition cat_binprod_swap (x y : A) : cat_binprod x y $-> cat_binprod y x - := cat_binprod_corec cat_pr2 cat_pr1. - - Lemma cat_binprod_swap_cat_binprod_swap (x y : A) - : cat_binprod_swap x y $o cat_binprod_swap y x $== Id _. - Proof. - apply cat_binprod_eta_pr. - - refine ((cat_assoc _ _ _)^$ $@ _). - nrefine (cat_binprod_beta_pr1 _ _ $@R _ $@ _). - nrefine (cat_binprod_beta_pr2 _ _ $@ _). - exact (cat_idr _)^$. - - refine ((cat_assoc _ _ _)^$ $@ _). - nrefine (cat_binprod_beta_pr2 _ _ $@R _ $@ _). - nrefine (cat_binprod_beta_pr1 _ _ $@ _). - exact (cat_idr _)^$. - Defined. - - Lemma cate_binprod_swap (x y : A) - : cat_binprod x y $<~> cat_binprod y x. - Proof. - snrapply cate_adjointify. - 1,2: apply cat_binprod_swap. - all: apply cat_binprod_swap_cat_binprod_swap. - Defined. - -End Symmetry. - (** *** Binary product functor *) (** We prove bifunctoriality of [cat_binprod : A -> A -> A] by factoring it as [cat_prod Bool o Bool_rec A]. First, we prove that [Bool_rec A : A -> A -> (Bool -> A)] is a bifunctor. *) @@ -535,38 +502,113 @@ Proof. by apply cat_binprod_corec_eta. Defined. -(** *** Products in Type *) +Definition cat_pr1_fmap01_binprod {A : Type} `{HasBinaryProducts A} + (a : A) {x y : A} (g : x $-> y) + : cat_pr1 $o fmap01 (fun x y => cat_binprod x y) a g $== cat_pr1 + := cat_binprod_beta_pr1 _ _ $@ cat_idl _. -(** Since we use the Yoneda lemma in this file, we therefore depend on WildCat.Universe which means these instances have to live here. *) -Global Instance hasbinaryproducts_type : HasBinaryProducts Type. +Definition cat_pr1_fmap10_binprod {A : Type} `{HasBinaryProducts A} + {x y : A} (f : x $-> y) (a : A) + : cat_pr1 $o fmap10 (fun x y => cat_binprod x y) f a $== f $o cat_pr1 + := cat_binprod_beta_pr1 _ _. + +Definition cat_pr1_fmap11_binprod {A : Type} `{HasBinaryProducts A} + {w x y z : A} (f : w $-> y) (g : x $-> z) + : cat_pr1 $o fmap11 (fun x y => cat_binprod x y) f g $== f $o cat_pr1. Proof. - intros X Y. - snrapply Build_BinaryProduct. - - exact (X * Y). - - exact fst. - - exact snd. - - intros Z f g z. exact (f z, g z). - - reflexivity. - - reflexivity. - - intros Z f g p q x. - apply path_prod. - + exact (p x). - + exact (q x). + refine ((cat_assoc _ _ _)^$ $@ (_ $@R _) $@ cat_assoc _ _ _ $@ _). + 1: apply cat_binprod_beta_pr1. + exact (cat_idl _ $@ cat_binprod_beta_pr1 _ _). Defined. -(** Assuming [Funext], [Type] has all products. *) -Global Instance hasallproducts_type `{Funext} : HasAllProducts Type. +Definition cat_pr2_fmap01_binprod {A : Type} `{HasBinaryProducts A} + (a : A) {x y : A} (g : x $-> y) + : cat_pr2 $o fmap01 (fun x y => cat_binprod x y) a g $== g $o cat_pr2 + := cat_binprod_beta_pr2 _ _. + +Definition cat_pr2_fmap10_binprod {A : Type} `{HasBinaryProducts A} + {x y : A} (f : x $-> y) (a : A) + : cat_pr2 $o fmap10 (fun x y => cat_binprod x y) f a $== cat_pr2 + := cat_binprod_beta_pr2 _ _ $@ cat_idl _. + +Definition cat_pr2_fmap11_binprod {A : Type} `{HasBinaryProducts A} + {w x y z : A} (f : w $-> y) (g : x $-> z) + : cat_pr2 $o fmap11 (fun x y => cat_binprod x y) f g $== g $o cat_pr2. Proof. - intros I x. - snrapply Build_Product. - - exact (forall (i : I), x i). - - intros i f. exact (f i). - - intros A f a i. exact (f i a). - - reflexivity. - - intros A f g p a. - exact (path_forall _ _ (fun i => p i a)). + refine ((cat_assoc _ _ _)^$ $@ (_ $@R _) $@ cat_assoc _ _ _ $@ (_ $@L _)). + 1: apply cat_binprod_beta_pr2. + apply cat_pr2_fmap10_binprod. Defined. +(** *** Symmetry of binary products *) + +Section Symmetry. + + (** The requirement of having all binary products can be weakened further to having specific binary products, but it is not clear this is a useful generality. *) + Context {A : Type} `{HasEquivs A} `{!HasBinaryProducts A}. + + Definition cat_binprod_swap (x y : A) : cat_binprod x y $-> cat_binprod y x + := cat_binprod_corec cat_pr2 cat_pr1. + + Lemma cat_binprod_swap_cat_binprod_swap (x y : A) + : cat_binprod_swap x y $o cat_binprod_swap y x $== Id _. + Proof. + apply cat_binprod_eta_pr. + - refine ((cat_assoc _ _ _)^$ $@ _). + nrefine (cat_binprod_beta_pr1 _ _ $@R _ $@ _). + nrefine (cat_binprod_beta_pr2 _ _ $@ _). + exact (cat_idr _)^$. + - refine ((cat_assoc _ _ _)^$ $@ _). + nrefine (cat_binprod_beta_pr2 _ _ $@R _ $@ _). + nrefine (cat_binprod_beta_pr1 _ _ $@ _). + exact (cat_idr _)^$. + Defined. + + Lemma cate_binprod_swap (x y : A) + : cat_binprod x y $<~> cat_binprod y x. + Proof. + snrapply cate_adjointify. + 1,2: apply cat_binprod_swap. + all: apply cat_binprod_swap_cat_binprod_swap. + Defined. + + Definition cat_binprod_swap_nat {a b c d : A} (f : a $-> c) (g : b $-> d) + : cat_binprod_swap c d $o fmap11 (fun x y : A => cat_binprod x y) f g + $== fmap11 (fun x y : A => cat_binprod x y) g f $o cat_binprod_swap a b. + Proof. + apply cat_binprod_eta_pr. + - refine ((cat_assoc _ _ _)^$ $@ _). + nrefine ((cat_binprod_beta_pr1 _ _ $@R _) $@ _). + nrefine (cat_pr2_fmap11_binprod _ _ $@ _). + refine (_ $@ cat_assoc _ _ _). + refine (_ $@ (_^$ $@R _)). + 2: apply cat_pr1_fmap11_binprod. + refine ((_ $@L _^$) $@ (cat_assoc _ _ _)^$). + apply cat_binprod_beta_pr1. + - refine ((cat_assoc _ _ _)^$ $@ _). + nrefine ((cat_binprod_beta_pr2 _ _ $@R _) $@ _). + refine (cat_pr1_fmap11_binprod _ _ $@ _). + refine (_ $@ cat_assoc _ _ _). + refine (_ $@ (_^$ $@R _)). + 2: apply cat_pr2_fmap11_binprod. + refine ((_ $@L _^$) $@ (cat_assoc _ _ _)^$). + apply cat_binprod_beta_pr2. + Defined. + + Local Instance symmetricbraiding_binprod + : SymmetricBraiding (fun x y => cat_binprod x y). + Proof. + snrapply Build_SymmetricBraiding. + - snrapply Build_Braiding. + + exact cat_binprod_swap. + + intros [a b] [c d] [f g]; cbn in f, g. + refine (cat_binprod_swap_nat f g $@ (_ $@R _)). + rapply fmap11_coh. + - exact cat_binprod_swap_cat_binprod_swap. + Defined. + +End Symmetry. + (** *** Associativity of binary products *) Section Associativity. @@ -578,7 +620,7 @@ Section Associativity. Proof. apply cat_binprod_corec. - exact (cat_pr1 $o cat_pr2). - - exact (fmap (fun y => cat_binprod x y) cat_pr2). + - exact (fmap01 (fun x y => cat_binprod x y) x cat_pr2). Defined. Lemma cat_binprod_twist_cat_binprod_twist (x y z : A) @@ -618,13 +660,363 @@ Section Associativity. 1,2: apply cat_binprod_twist_cat_binprod_twist. Defined. - Lemma cate_binprod_assoc (x y z : A) - : cat_binprod x (cat_binprod y z) $<~> cat_binprod (cat_binprod x y) z. + Definition cat_binprod_twist_nat {a a' b b' c c' : A} + (f : a $-> a') (g : b $-> b') (h : c $-> c') + : cat_binprod_twist a' b' c' + $o fmap11 (fun x y => cat_binprod x y) f (fmap11 (fun x y => cat_binprod x y) g h) + $== fmap11 (fun x y => cat_binprod x y) g (fmap11 (fun x y => cat_binprod x y) f h) + $o cat_binprod_twist a b c. + Proof. + apply cat_binprod_eta_pr. + - refine ((cat_assoc _ _ _)^$ $@ _). + nrefine ((cat_binprod_beta_pr1 _ _ $@R _) $@ _). + nrefine (cat_assoc _ _ _ $@ _). + nrefine ((_ $@L _) $@ _). + 1: apply cat_pr2_fmap11_binprod. + refine ((cat_assoc _ _ _)^$ $@ _). + nrefine ((_ $@R _) $@ _). + 1: apply cat_pr1_fmap11_binprod. + nrefine (_ $@ cat_assoc _ _ _). + refine (_ $@ (_^$ $@R _)). + 2: apply cat_pr1_fmap11_binprod. + refine (cat_assoc _ _ _ $@ (_ $@L _^$) $@ (cat_assoc _ _ _)^$). + apply cat_binprod_beta_pr1. + - refine ((cat_assoc _ _ _)^$ $@ _). + nrefine ((cat_binprod_beta_pr2 _ _ $@R _) $@ _). + nrefine (_ $@ cat_assoc _ _ _). + refine (_ $@ (_^$ $@R _)). + 2: apply cat_pr2_fmap11_binprod. + refine (_ $@ (_ $@L _^$) $@ (cat_assoc _ _ _)^$). + 2: apply cat_binprod_beta_pr2. + refine (_ $@ (cat_assoc _ _ _)^$). + refine (_ $@ (_ $@L _)). + 2: rapply fmap11_coh. + refine ((cat_assoc _ _ _)^$ $@ (_ $@R _) $@ (cat_assoc _ _ _)). + refine ((fmap01_comp _ _ _ _)^$ $@ fmap02 _ _ _ $@ fmap01_comp _ _ _ _). + apply cat_pr2_fmap11_binprod. + Defined. + + Local Existing Instance symmetricbraiding_binprod. + + Local Instance associator_binprod : Associator (fun x y => cat_binprod x y). Proof. - nrefine (cate_binprod_swap _ _ $oE _). - nrefine (cate_binprod_twist _ _ _ $oE _). - refine (emap (fun y => cat_binprod x y) _). - exact (cate_binprod_swap _ _). + srapply associator_twist. + - exact cat_binprod_twist. + - exact cat_binprod_twist_cat_binprod_twist. + - intros ? ? ? ? ? ?; exact cat_binprod_twist_nat. Defined. + Context (unit : A) `{!IsTerminal unit}. + + Local Instance right_unitor_binprod + : RightUnitor (fun x y => cat_binprod x y) unit. + Proof. + snrapply Build_NatEquiv. + - intros a. + unfold flip. + snrapply cate_adjointify. + + exact cat_pr1. + + apply cat_binprod_corec. + * exact (Id _). + * exact (mor_terminal _ _). + + apply cat_binprod_beta_pr1. + + apply cat_binprod_eta_pr. + * refine ((cat_assoc _ _ _)^$ $@ (_ $@R _) $@ _). + 1: apply cat_binprod_beta_pr1. + exact (cat_idl _ $@ (cat_idr _)^$). + * refine ((cat_assoc _ _ _)^$ $@ (_ $@R _) $@ _). + 1: apply cat_binprod_beta_pr2. + refine (_^$ $@ _). + 1,2: rapply mor_terminal_unique. + - intros a b f. + refine ((_ $@R _) $@ _ $@ (_ $@L _^$)). + 1,3: apply cate_buildequiv_fun. + apply cat_binprod_beta_pr1. + Defined. + + Local Existing Instance left_unitor_twist. + + Local Instance triangle_binprod + : TriangleIdentity (fun x y => cat_binprod x y) unit. + Proof. + snrapply triangle_twist. + intros a b. + refine (fmap02 _ _ _ $@ _). + 1: apply cate_buildequiv_fun. + refine (_ $@ ((_ $@L fmap02 _ _ _^$) $@R _)). + 2: apply cate_buildequiv_fun. + apply cat_binprod_eta_pr. + - refine (cat_pr1_fmap01_binprod _ _ $@ _). + nrefine (_ $@ cat_assoc _ _ _). + refine (_ $@ (((_^$ $@R _) $@ cat_assoc _ _ _) $@R _)). + 2: apply cat_binprod_beta_pr1. + refine (_ $@ (_^$ $@R _)). + 2: apply cat_pr2_fmap01_binprod. + refine (_ $@ (cat_assoc _ _ _)^$). + refine (_^$ $@ (_ $@L _^$)). + 2: apply cat_binprod_beta_pr2. + apply cat_pr1_fmap01_binprod. + - nrefine (_ $@ _). + 1: apply cat_pr2_fmap01_binprod. + nrefine (_ $@ cat_assoc _ _ _). + refine (_ $@ ((_^$ $@R _) $@ cat_assoc _ _ _ $@R _)). + 2: apply cat_binprod_beta_pr2. + refine (_^$ $@ (_^$ $@R _)). + 2: apply cat_pr1_fmap01_binprod. + apply cat_binprod_beta_pr1. + Defined. + + Local Instance pentagon_binprod + : PentagonIdentity (fun x y => cat_binprod x y). + Proof. + snrapply pentagon_twist. + intros a b c d. + repeat nrefine (cat_assoc _ _ _ $@ _). + repeat refine (_ $@ (cat_assoc _ _ _)^$). + apply cat_binprod_eta_pr. + - refine ((cat_assoc _ _ _)^$ $@ _ $@ cat_assoc _ _ _). + refine ((_ $@R _) $@ _ $@ (_^$ $@R _)). + 1,3: apply cat_pr1_fmap01_binprod. + refine ((cat_assoc _ _ _)^$ $@ _ $@ cat_assoc _ _ _). + refine ((_ $@R _) $@ _ $@ (_^$ $@R _)). + 1: apply cat_binprod_beta_pr1. + 2: apply cat_pr1_fmap01_binprod. + refine ((cat_assoc _ _ _)^$ $@ _ $@ cat_assoc _ _ _). + refine (_ $@ _). + { do 2 refine (cat_assoc _ _ _ $@ _). + refine (_ $@L _). + refine ((cat_assoc _ _ _)^$ $@ _). + refine ((_ $@R _) $@ _). + 1: apply cat_binprod_beta_pr2. + refine ((cat_assoc _ _ _)^$ $@ _). + refine ((_ $@R _) $@ _). + 1: apply cat_binprod_beta_pr1. + refine (cat_assoc _ _ _ $@ (_ $@L _) $@ _). + 1: apply cat_pr2_fmap01_binprod. + refine ((cat_assoc _ _ _)^$ $@ (_ $@R _)). + apply cat_binprod_beta_pr1. } + refine (_ $@ (_^$ $@R _)). + 2: apply cat_binprod_beta_pr1. + refine (_ $@ (cat_assoc _ _ _)^$). + refine (_ $@ (_ $@L _^$)). + 2: apply cat_pr2_fmap01_binprod. + refine (_ $@ cat_assoc _ _ _). + refine (_ $@ (_^$ $@R _)). + 2: apply cat_binprod_beta_pr1. + symmetry; apply cat_assoc. + - refine ((cat_assoc _ _ _)^$ $@ _ $@ cat_assoc _ _ _). + refine ((_ $@R _) $@ _ $@ (_^$ $@R _)). + 1,3: apply cat_pr2_fmap01_binprod. + refine (cat_assoc _ _ _ $@ _ $@ (cat_assoc _ _ _)^$). + refine ((_ $@L _) $@ _). + { refine ((cat_assoc _ _ _)^$ $@ (_ $@R _)). + apply cat_binprod_beta_pr2. } + refine (_ $@ (_ $@L _)). + 2: { refine ((_^$ $@R _) $@ cat_assoc _ _ _). + apply cat_pr2_fmap01_binprod. } + apply cat_binprod_eta_pr. + + refine ((cat_assoc _ _ _)^$ $@ _ $@ cat_assoc _ _ _). + refine ((_ $@R _) $@ _ $@ (_^$ $@R _)). + 1,3: apply cat_binprod_beta_pr1. + refine ((cat_assoc _ _ _)^$ $@ (_ $@R _) $@ _ $@ (cat_assoc _ _ _)^$). + 1: apply cat_pr2_fmap01_binprod. + refine (cat_assoc _ _ _ $@ _). + refine ((_ $@L ((cat_assoc _ _ _)^$ $@ (_ $@R _))) $@ _). + 1: apply cat_binprod_beta_pr2. + refine (_ $@ (_ $@L _)). + 2: { do 2 refine ((_ $@R _) $@ cat_assoc _ _ _). + symmetry. + apply cat_binprod_beta_pr2. } + refine (_ $@ cat_assoc _ _ _). + refine (_ $@ (_ $@R _)). + 2: { do 2 refine ((_ $@R _) $@ (cat_assoc _ _ _)). + symmetry. + apply cat_binprod_beta_pr1. } + do 2 refine (_ $@ (cat_assoc _ _ _)^$). + refine ((_ $@L _) $@ _). + { refine ((cat_assoc _ _ _)^$ $@ (_ $@R _)). + apply cat_binprod_beta_pr1. } + refine (_ $@ (_ $@L (_ $@L _))). + 2: { refine ((_^$ $@R _) $@ cat_assoc _ _ _). + apply cat_binprod_beta_pr2. } + refine (_ $@ (_ $@L _)). + 2: { refine ((_^$ $@R _) $@ cat_assoc _ _ _). + apply cat_binprod_beta_pr2. } + refine (_ $@ (_ $@L _)). + 2: { refine ((_ $@L _^$) $@ (cat_assoc _ _ _)^$). + apply cat_binprod_beta_pr2. } + refine (_ $@ (_ $@L _)). + 2: { refine ((_^$ $@R _) $@ cat_assoc _ _ _). + apply cat_binprod_beta_pr2. } + refine (_ $@ (_^$ $@R _) $@ cat_assoc _ _ _). + 2: apply cat_binprod_beta_pr2. + refine ((_ $@L _) $@ _). + { refine (cat_assoc _ _ _ $@ (_ $@L _)). + apply cat_binprod_beta_pr2. } + refine ((_ $@L _) $@ _). + 1: refine ((cat_assoc _ _ _)^$ $@ (_ $@R _)). + 1: apply cat_binprod_beta_pr1. + symmetry; apply cat_assoc. + + refine ((cat_assoc _ _ _)^$ $@ _ $@ cat_assoc _ _ _). + refine ((_ $@R _) $@ _ $@ (_^$ $@R _)). + 1,3: apply cat_binprod_beta_pr2. + refine ((cat_assoc _ _ _)^$ $@ ((_ $@ _) $@R _) $@ _). + 1: apply cat_binprod_beta_pr1. + 1: apply cat_idl. + refine ((cat_assoc _ _ _)^$ $@ (_ $@R _) $@ _). + 1: apply cat_binprod_beta_pr1. + refine ((cat_assoc _ _ _)^$ $@ (_ $@R _) $@ _). + 1: apply cat_binprod_beta_pr2. + refine (_ $@ (_ $@L _)). + 2: { refine ((_^$ $@R _) $@ cat_assoc _ _ _). + refine (cat_assoc _ _ _ $@ (_ $@L _)). + apply cat_binprod_beta_pr2. } + refine (_ $@ cat_assoc _ _ _). + refine (_ $@ (_ $@R _)). + 2: refine (cat_assoc _ _ _). + repeat refine (_ $@ (cat_assoc _ _ _)^$). + apply cat_binprod_eta_pr. + * refine ((cat_assoc _ _ _)^$ $@ _ $@ cat_assoc _ _ _). + refine ((_ $@R _) $@ _ $@ (_^$ $@R _)). + 1,3: apply cat_pr1_fmap01_binprod. + nrefine (cat_pr1_fmap01_binprod _ _ $@ _ $@ cat_assoc _ _ _). + refine (_ $@ (_^$ $@R _)). + 2: apply cat_pr1_fmap01_binprod. + refine (_^$ $@ (_^$ $@R _) $@ cat_assoc _ _ _). + 2: apply cat_pr1_fmap01_binprod. + apply cat_pr1_fmap01_binprod. + * refine ((cat_assoc _ _ _)^$ $@ _ $@ cat_assoc _ _ _). + refine ((_ $@R _) $@ _ $@ (_^$ $@R _)). + 1,3: apply cat_pr2_fmap01_binprod. + refine (cat_assoc _ _ _ $@ _ $@ (cat_assoc _ _ _)^$). + refine ((_ $@L _) $@ _). + 1: apply cat_pr2_fmap01_binprod. + refine ((cat_assoc _ _ _)^$ $@ (_ $@R _) $@ _). + 1: apply cat_binprod_beta_pr2. + refine (_ $@ (_ $@L _)). + 2: { refine ((_^$ $@R _) $@ cat_assoc _ _ _). + apply cat_pr2_fmap01_binprod. } + refine (_ $@ cat_assoc _ _ _). + refine (_ $@ ((_^$ $@ _) $@R _)). + 3: apply cat_assoc. + 2: refine (_ $@R _). + 2: apply cat_binprod_beta_pr2. + refine (_ $@ cat_assoc _ _ _). + refine (_ $@ ((_^$ $@ _^$) $@R _)). + 3: apply cat_assoc. + 2: refine (_ $@L _). + 2: apply cat_pr2_fmap01_binprod. + refine (_ $@ (_ $@L ((_ $@L _^$) $@ (cat_assoc _ _ _)^$)) + $@ (cat_assoc _ _ _)^$). + 2: apply cat_pr2_fmap01_binprod. + refine (_ $@ (_ $@L (_ $@ _))). + 3: apply cat_assoc. + 2: refine (_^$ $@R _). + 2: apply cat_binprod_beta_pr2. + refine ((_^$ $@R _) $@ cat_assoc _ _ _). + apply cat_pr1_fmap01_binprod. + Defined. + + Local Instance hexagon_identity + : HexagonIdentity (fun x y => cat_binprod x y). + Proof. + snrapply hexagon_twist. + intros a b c. + refine (cat_assoc _ _ _ $@ _ $@ (cat_assoc _ _ _)^$). + snrapply cat_binprod_eta_pr. + - refine ((cat_assoc _ _ _)^$ $@ (_ $@R _) + $@ _ $@ (_^$ $@R _) $@ cat_assoc _ _ _). + 1: apply cat_pr1_fmap01_binprod. + 2: apply cat_binprod_beta_pr1. + refine ((cat_assoc _ _ _)^$ $@ (_ $@R _) + $@ _ $@ ((cat_assoc _ _ _ $@ (_ $@L _))^$ $@R _) $@ cat_assoc _ _ _). + 1: apply cat_binprod_beta_pr1. + 2: apply cat_pr2_fmap01_binprod. + nrefine (cat_assoc _ _ _ $@ (_ $@L _) $@ _). + 1: apply cat_pr2_fmap01_binprod. + refine (_ $@ (_ $@L (cat_assoc _ _ _)^$) $@ (cat_assoc _ _ _)^$). + refine (_ $@ (_ $@@ _)^$ $@ cat_assoc _ _ _). + 2: apply cat_binprod_beta_pr2. + 2: apply cat_binprod_beta_pr1. + refine ((cat_assoc _ _ _)^$ $@ (_ $@R _) $@ _^$). + 1: apply cat_binprod_beta_pr1. + apply cat_pr2_fmap01_binprod. + - refine ((cat_assoc _ _ _)^$ $@ (_ $@R _) + $@ _ $@ (_^$ $@R _) $@ cat_assoc _ _ _). + 1: apply cat_pr2_fmap01_binprod. + 2: apply cat_binprod_beta_pr2. + nrefine (cat_assoc _ _ _ $@ (_ $@L _) $@ _). + { refine ((cat_assoc _ _ _)^$ $@ (_ $@R _)). + apply cat_binprod_beta_pr2. } + snrapply cat_binprod_eta_pr. + + refine ((cat_assoc _ _ _)^$ $@ (_ $@R _) + $@ _ $@ (_^$ $@R _) $@ cat_assoc _ _ _). + 1: apply cat_binprod_beta_pr1. + 2: apply cat_pr1_fmap01_binprod. + refine ((cat_assoc _ _ _)^$ $@ (_ $@R _) + $@ _ $@ (_^$ $@R _) $@ cat_assoc _ _ _). + 1: apply cat_pr2_fmap01_binprod. + 2: apply cat_pr1_fmap01_binprod. + refine (cat_assoc _ _ _ $@ (_ $@L _) $@ _ $@ _^$). + 1: apply cat_pr2_fmap01_binprod. + 2: apply cat_binprod_beta_pr1. + refine ((cat_assoc _ _ _)^$ $@ (_ $@R _)). + apply cat_binprod_beta_pr2. + + refine ((cat_assoc _ _ _)^$ $@ (_ $@R _) + $@ _ $@ (_^$ $@R _) $@ cat_assoc _ _ _). + 1: apply cat_binprod_beta_pr2. + 2: apply cat_pr2_fmap01_binprod. + refine ((cat_assoc _ _ _)^$ $@ (_ $@R _) + $@ _ $@ ((cat_assoc _ _ _ $@ (_ $@L _))^$ $@R _) $@ cat_assoc _ _ _). + 1: apply cat_pr1_fmap01_binprod. + 2: apply cat_pr2_fmap01_binprod. + nrefine (cat_pr1_fmap01_binprod _ _ $@ _). + refine (_ $@ (cat_assoc _ _ _)^$). + refine (_ $@ (_ $@L cat_assoc _ _ _)^$). + nrefine (_ $@ cat_assoc _ _ _). + refine ((_ $@@ _) $@ _)^$. + 1,2: apply cat_binprod_beta_pr2. + apply cat_pr1_fmap01_binprod. + Defined. + + Global Instance ismonoidal_binprod + : IsMonoidal A (fun x y => cat_binprod x y) unit + := {}. + + Global Instance issymmetricmonoidal_binprod + : IsSymmetricMonoidal A (fun x y => cat_binprod x y) unit + := {}. + End Associativity. + +(** *** Products in Type *) + +(** Since we use the Yoneda lemma in this file, we therefore depend on WildCat.Universe which means these instances have to live here. *) +Global Instance hasbinaryproducts_type : HasBinaryProducts Type. +Proof. + intros X Y. + snrapply Build_BinaryProduct. + - exact (X * Y). + - exact fst. + - exact snd. + - intros Z f g z. exact (f z, g z). + - reflexivity. + - reflexivity. + - intros Z f g p q x. + apply path_prod. + + exact (p x). + + exact (q x). +Defined. + +(** Assuming [Funext], [Type] has all products. *) +Global Instance hasallproducts_type `{Funext} : HasAllProducts Type. +Proof. + intros I x. + snrapply Build_Product. + - exact (forall (i : I), x i). + - intros i f. exact (f i). + - intros A f a i. exact (f i a). + - reflexivity. + - intros A f g p a. + exact (path_forall _ _ (fun i => p i a)). +Defined.