-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_mnist.py
43 lines (36 loc) · 1.57 KB
/
train_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import torch
import torchvision
from networks.autoencoders import AutoEncoder_mnist
import pdb
input_dim = 28*28
hidden_dim = 3
num_epoches = 100
batch_size = 128
train_data = torchvision.datasets.MNIST(root="../Non-local_pytorch/mnist", train=True, transform=torchvision.transforms.ToTensor())
test_data = torchvision.datasets.MNIST(root="../Non-local_pytorch/mnist", train=False, transform=torchvision.transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_data, batch_size=batch_size, shuffle=False)
net = AutoEncoder_mnist(input_dim, hidden_dim)
net.cuda()
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(net.parameters(), lr=0.001)
for epoch in range(num_epoches):
for i, (images, _) in enumerate(train_loader):
images = images.view(-1, 28*28)
images = images.cuda()
#pdb.set_trace()
encoded, decoded = net(images)
loss = criterion(images, decoded)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if(i+1) % 100 ==0:
print('Epoch [%d/%d], Iter[%d/%d] Loss:%.4f'%(epoch+1, num_epoches, i+1, len(train_data)//batch_size, loss.item()))
val_loss = 0
for i, (images, _) in enumerate(test_loader):
images = images.view(-1, 28*28)
images = images.cuda()
encoded, decoded = net(images)
loss = criterion(images, decoded)
val_loss += loss.item()
print('Epoch [%d/%d], Val Loss:%.4f'%(epoch+1, num_epoches, val_loss/batch_size))