-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_CCM_score-level_many.py
425 lines (336 loc) · 15.8 KB
/
train_CCM_score-level_many.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
# coding: utf-8
# this code is modified from the feature input example code: https://github.com/Hongje/CoVieW2018_temporal_attention-pytorch
#
# Hongje Seong
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
import numpy as np
from math import exp
import os
import sys
from pre_extracted_data_loader import pre_extracted_dataset
from models.CCM import *
from utils import progress_bar
import pdb
import time
arch = 'alexnet'
arch = arch + '_transfer_learning'
train_data_path = os.path.join('/HDD/place365/data/', arch, 'score/')
test_data_path = os.path.join('/HDD/place365/data/', arch, 'score/')
model_save_path = 'total_Adam_lr-1_batch2048'
model_save_path = os.path.join('/HDD/place365/weights/', arch, model_save_path)
batchsize = 2048
num_epoch = 1000 # It should less than 10000000
base_learning_rate = 0.1
learning_rate_decay_epoch = 30
learning_rate_decay_rate = 1./10 # It should float & less than 1
model_save_period_epoch = 10
# train_models_num = 6
load_weights = False
load_weights_path = '/HDD/weights/ckpt.pt'
input_data_length = [365,1000]
class_num = 365
weight_l2_regularization = 5e-4
data_loader_worker_num = 2
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# device = 'cpu'
best_acc_top1 = 0 # best test accuracy
best_acc_top5 = 0
best_acc_top1_avg = 0
best_acc_top5_avg = 0
best_top1_index = 0
best_top5_index = 0
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
if not os.path.isdir(model_save_path):
os.mkdir(model_save_path)
"""Load Network"""
net = []
# for i in range(train_models_num):
# net.append(FC1(input_data_length=input_data_length, class_num=class_num))
net.append(FC1_only_imagenet(input_data_length=input_data_length, class_num=class_num))
net.append(FC1_BN_only_imagenet(input_data_length=input_data_length, class_num=class_num))
net.append(FC1_only_place(input_data_length=input_data_length, class_num=class_num))
net.append(FC1_BN_only_place(input_data_length=input_data_length, class_num=class_num))
net.append(FC1_imagenet_sum(input_data_length=input_data_length, class_num=class_num))
net.append(FC1_BN_imagenet_sum(input_data_length=input_data_length, class_num=class_num))
net.append(FC1_imagenetReLU_sum(input_data_length=input_data_length, class_num=class_num))
net.append(FC1_BN_imagenetReLU_sum(input_data_length=input_data_length, class_num=class_num))
net.append(FC1_imagenetReLU_bias_sum(input_data_length=input_data_length, class_num=class_num))
net.append(FC1_BN_imagenetReLU_bias_sum(input_data_length=input_data_length, class_num=class_num))
net.append(FC1_imagenet_weighted_sum(input_data_length=input_data_length, class_num=class_num))
net.append(FC1_BN_imagenet_weighted_sum(input_data_length=input_data_length, class_num=class_num))
net.append(FC1_imagenet_Sigmoidweighted_sum(input_data_length=input_data_length, class_num=class_num))
net.append(FC1_BN_imagenet_Sigmoidweighted_sum(input_data_length=input_data_length, class_num=class_num))
net.append(FC1_imagenetReLU_weighted_sum(input_data_length=input_data_length, class_num=class_num))
net.append(FC1_BN_imagenetReLU_weighted_sum(input_data_length=input_data_length, class_num=class_num))
net.append(FC1_imagenetReLU_Sigmoidweighted_sum(input_data_length=input_data_length, class_num=class_num))
net.append(FC1_BN_imagenetReLU_Sigmoidweighted_sum(input_data_length=input_data_length, class_num=class_num))
net.append(FC1_imagenetReLU_bias_weighted_sum(input_data_length=input_data_length, class_num=class_num))
net.append(FC1_BN_imagenetReLU_bias_weighted_sum(input_data_length=input_data_length, class_num=class_num))
net.append(FC1_imagenetReLU_bias_Sigmoidweighted_sum(input_data_length=input_data_length, class_num=class_num))
net.append(FC1_BN_imagenetReLU_bias_Sigmoidweighted_sum(input_data_length=input_data_length, class_num=class_num))
net.append(FC_imagenet_FC_place_sum(input_data_length=input_data_length, class_num=class_num))
net.append(FC_BN_imagenet_FC_BN_place_sum(input_data_length=input_data_length, class_num=class_num))
net.append(FC_imagenet_FC_place_weighted_sum(input_data_length=input_data_length, class_num=class_num))
net.append(FC_BN_imagenet_FC_BN_place_weighted_sum(input_data_length=input_data_length, class_num=class_num))
train_models_num = len(net)
best_acc_top1_models = []
best_acc_top5_models = []
best_epoch_models = []
best_epoch_top1_models = []
best_epoch_top5_models = []
for i in range(train_models_num):
best_acc_top1_models.append(0)
best_acc_top5_models.append(0)
best_epoch_models.append(0)
best_epoch_top1_models.append(0)
best_epoch_top5_models.append(0)
for i in range(train_models_num):
net[i] = net[i].to(device)
if device == 'cuda':
for i in range(train_models_num):
net[i] = torch.nn.DataParallel(net[i])
cudnn.benchmark = True
# torch.backends.cudnn.enabled=False
if load_weights:
# Load checkpoint.
print('==> Resuming from trained model..')
assert os.path.isfile(load_weights_path), 'Error: no weight file! %s'%(load_weights_path)
checkpoint = torch.load(load_weights_path)
for i in range(train_models_num):
net[i].load_state_dict(checkpoint['net'])
best_epoch_top1[i] = start_epoch
best_epoch_top5[i] = start_epoch
best_acc_top1 = checkpoint['acc_top1']
best_acc_top5 = checkpoint['acc_top5']
best_epoch = start_epoch
start_epoch = checkpoint['epoch']
training_setting_file = open(os.path.join(model_save_path,'training_settings.txt'), 'a')
training_setting_file.write('----- training options ------\n')
training_setting_file.write('batchsize = %d\n'%batchsize)
training_setting_file.write('num_epoch = %d\n'%num_epoch)
training_setting_file.write('base_learning_rate = %f\n'%base_learning_rate)
training_setting_file.write('learning_rate_decay_epoch = %d\n'%learning_rate_decay_epoch)
training_setting_file.write('learning_rate_decay_rate = %f\n'%learning_rate_decay_rate)
training_setting_file.write('model_save_period_epoch = %d\n'%model_save_period_epoch)
training_setting_file.write('load_weights = %r\n'%load_weights)
training_setting_file.write('start_epoch = %d\n'%start_epoch)
training_setting_file.write('-----------------------------\n')
training_setting_file.write('\n\n')
training_setting_file.close()
criterion = []
for i in range(train_models_num):
criterion.append(nn.CrossEntropyLoss())
"""Load Dataset"""
transform_train = None
transform_test = None
trainset = pre_extracted_dataset(root=train_data_path, train=True, transform=transform_train)
trainloader = DataLoader(trainset, batch_size=batchsize, shuffle=True, num_workers=data_loader_worker_num)
testset = pre_extracted_dataset(root=test_data_path, train=False, transform=transform_test)
testloader = DataLoader(testset, batch_size=batchsize, shuffle=False, num_workers=data_loader_worker_num)
optimizer = []
scheduler = []
for i in range(train_models_num):
optimizer.append(torch.optim.Adam(net[i].parameters(), lr=base_learning_rate, weight_decay=weight_l2_regularization))
# optimizer.append(torch.optim.SGD(net[i].parameters(), base_learning_rate, momentum=0.9, weight_decay=weight_l2_regularization))
for i in range(train_models_num):
scheduler.append(torch.optim.lr_scheduler.StepLR(optimizer[i], step_size=learning_rate_decay_epoch, gamma=learning_rate_decay_rate))
# Training
def train(epoch, learning_rate):
print('\nEpoch: %d' % epoch)
losses = []
top1 = []
top5 = []
for i in range(train_models_num):
net[i].train()
losses.append(AverageMeter())
top1.append(AverageMeter())
top5.append(AverageMeter())
losses_global = AverageMeter()
top1_global = AverageMeter()
top5_global = AverageMeter()
for batch_idx, (data_places, data_imagenet, targets) in enumerate(trainloader):
data_places, data_imagenet, targets = data_places.to(device), data_imagenet.to(device), targets.to(device)
outputs = []
for i in range(train_models_num):
outputs.append(net[i](data_places, data_imagenet))
loss = []
for i in range(train_models_num):
loss.append(criterion[i](outputs[i], targets))
for i in range(train_models_num):
prec1, prec5 = accuracy_topk(outputs[i].data, targets, topk=(1, 5))
losses[i].update(loss[i].item(), data_places.size(0))
top1[i].update(prec1.item(), data_places.size(0))
top5[i].update(prec5.item(), data_places.size(0))
losses_global.update(loss[i].item(), data_places.size(0))
top1_global.update(prec1.item(), data_places.size(0))
top5_global.update(prec5.item(), data_places.size(0))
# compute gradient and do Adam step
for i in range(train_models_num):
optimizer[i].zero_grad()
loss[i].backward()
optimizer[i].step()
progress_bar(batch_idx, len(trainloader),
'Loss: {loss.avg:.4f} | '
'Prec@1: {top1.avg:.3f} | '
'Prec@5: {top5.avg:.3f}'.format(
loss=losses_global, top1=top1_global, top5=top5_global))
# Test
def test(epoch):
global best_acc_top1
global best_acc_top5
global best_acc_top1_avg
global best_acc_top5_avg
global best_top1_index
global best_top5_index
global best_epoch
global best_epoch_top1
global best_epoch_top5
losses = []
top1 = []
top5 = []
for i in range(train_models_num):
net[i].eval()
losses.append(AverageMeter())
top1.append(AverageMeter())
top5.append(AverageMeter())
losses_global = AverageMeter()
top1_global = AverageMeter()
top5_global = AverageMeter()
with torch.no_grad():
for batch_idx, (data_places, data_imagenet, targets) in enumerate(testloader):
data_places, data_imagenet, targets = data_places.to(device), data_imagenet.to(device), targets.to(device)
outputs = []
for i in range(train_models_num):
outputs.append(net[i](data_places, data_imagenet))
loss = []
for i in range(train_models_num):
loss.append(criterion[i](outputs[i], targets))
for i in range(train_models_num):
prec1, prec5 = accuracy_topk(outputs[i].data, targets, topk=(1, 5))
losses[i].update(loss[i].item(), data_places.size(0))
top1[i].update(prec1.item(), data_places.size(0))
top5[i].update(prec5.item(), data_places.size(0))
losses_global.update(loss[i].item(), data_places.size(0))
top1_global.update(prec1.item(), data_places.size(0))
top5_global.update(prec5.item(), data_places.size(0))
progress_bar(batch_idx, len(testloader),
'Loss: {loss.avg:.4f} | '
'Prec@1: {top1.avg:.3f} | '
'Prec@5: {top5.avg:.3f}'.format(
loss=losses_global, top1=top1_global, top5=top5_global))
# Save checkpoint.
acc_top1 = []
acc_top5 = []
current_best = []
for i in range(train_models_num):
acc_top1.append(top1[i].avg)
acc_top5.append(top5[i].avg)
current_best.append(False)
for i in range(train_models_num):
if best_acc_top1_models[i] < acc_top1[i]:
best_acc_top1_models[i] = acc_top1[i]
best_epoch_top1_models[i] = epoch
current_best[i] = True
if best_acc_top5_models[i] < acc_top5[i]:
best_acc_top5_models[i] = acc_top5[i]
best_epoch_top5_models[i] = epoch
best_acc_top1_avg = sum(best_acc_top1_models) / float(len(best_acc_top1_models))
best_acc_top5_avg = sum(best_acc_top5_models) / float(len(best_acc_top5_models))
max_acc_top1_index = acc_top1.index(max(acc_top1))
max_acc_top5_index = acc_top5.index(max(acc_top5))
max_acc_top1_value = max(acc_top1)
max_acc_top5_value = max(acc_top5)
if ((epoch+1) % model_save_period_epoch) == 0:
for i in range(train_models_num):
state = {
'net': net[i].state_dict(),
'acc_top1': acc_top1[i],
'acc_top5': acc_top5[i],
'epoch': epoch,
}
torch.save(state, os.path.join(model_save_path, 'weights_idx_%04d_lastest.pt'%(i)))
if max_acc_top1_value > best_acc_top1:
print('Saving... best test accuracy-top1')
state = {
'net': net[max_acc_top1_index].state_dict(),
'acc_top1': max_acc_top1_value,
'acc_top5': acc_top5[max_acc_top1_index],
'epoch': epoch,
}
torch.save(state, os.path.join(model_save_path, 'ckpt.pt'))
# torch.save(state, os.path.join(model_save_path, 'weights_%07d.pt'%(epoch+1)))
best_acc_top1 = max_acc_top1_value
best_top1_index = max_acc_top1_index
best_epoch_top1 = epoch
best_epoch = epoch
if max_acc_top5_value > best_acc_top5:
print('Saving... best test accuracy-top5')
state = {
'net': net[max_acc_top1_index].state_dict(),
'acc_top1': acc_top1[i],
'acc_top5': acc_top5[i],
'epoch': epoch,
}
torch.save(state, os.path.join(model_save_path, 'ckpt_top5.pt'))
# torch.save(state, os.path.join(model_save_path, 'weights_%07d.pt'%(epoch+1)))
best_acc_top5 = max_acc_top5_value
best_top5_index = max_acc_top5_index
best_epoch_top5 = epoch
best_epoch = epoch
for i in range(train_models_num):
if current_best[i]:
print('Saving... best test accuracy-top1 model: %d'%(i))
state = {
'net': net[i].state_dict(),
'acc_top1': max_acc_top1_value,
'acc_top5': acc_top5[i],
'epoch': epoch,
}
torch.save(state, os.path.join(model_save_path, 'ckpt_top1_idx_%04d.pt'%(i)))
print('The best test accuracy-top1: %f epoch: %d index: %d'%(best_acc_top1, best_epoch_top1, best_top1_index))
print('The best test accuracy-top5: %f epoch: %d index: %d'%(best_acc_top5, best_epoch_top5, best_top5_index))
print('The best test avg acc-top1: %f%% acc-top5: %f%%'%(best_acc_top1_avg, best_acc_top5_avg))
for i in range(train_models_num):
print('%03d_top1_%.3f%%_epoch_%d_top5_%.4f%%_epoch_%d'%(
i, best_acc_top1_models[i], best_epoch_top1_models[i], best_acc_top5_models[i], best_epoch_top5_models[i]))
print('')
for i in range(train_models_num):
print('model number: %03d | loss: %.3f | best acc: (%.3f%%, %.3f%%) current acc: (%.3f%%, %.3f%%) | best epoch: (%d, %d)'%(
i, losses[i].avg, best_acc_top1_models[i], best_acc_top5_models[i], acc_top1[i], acc_top5[i], best_epoch_top1_models[i], best_epoch_top5_models[i]))
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy_topk(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
for epoch in range(start_epoch, start_epoch+num_epoch):
for i in range(train_models_num):
scheduler[i].step()
train(epoch, base_learning_rate)
test(epoch)