-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCANOPY_SOIL_COUPLER.m
692 lines (492 loc) · 22.8 KB
/
CANOPY_SOIL_COUPLER.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
nl_can = PARAMS.CanStruc.nl_can;
nl_soil=PARAMS.nl_soil;
for si=1:num_species
file_name_Py = sprintf('YrwdSpec_%sY%s.mat', num2str(si), num2str(Start_Y));
load('.\Temps\temporary.mat', 'config_path');
YrPath=fullfile(config_path, 'YearFr');
fullpath_Py =...
fullfile(YrPath, file_name_Py);
load (fullpath_Py,...
'dat_LAD')
znc = (dat_LAD(:,1))'; % Middle of each canopy grid [m]
zhc = (dat_LAD(:,1)+(dat_LAD(2,1)-dat_LAD(1,1))/2)'; % Top of each canopy grid [m]
%dzc = zhc(1)./2;
dzc = zhc(1);
VERTSTRUC.znc = znc;
VERTSTRUC.zhc = zhc;
VERTSTRUC.dzc = dzc;
LADnorm_all(:,si)= dat_LAD(:,2);
%% Soil Charecteristics
load (fullpath_Py,...
'dat_root')
zns = dat_root(:,1);
dzs=zeros(nl_soil,1);
% Soil layer thicknesses
dzs(1) = 0.5*(zns(1)+zns(2));
dzs(nl_soil)= zns(nl_soil)-zns(nl_soil-1);
for j = 2:nl_soil-1
dzs(j)= 0.5*(zns(j+1)-zns(j-1));
end
% dzs=dzs';
zhs=zeros(nl_soil,1);
% Soil layer interface depths from the surface [m]
zhs(nl_soil) = zns(nl_soil) + 0.5*dzs(nl_soil);
for j = 1:nl_soil-1
zhs(j)= 0.5*(zns(j)+zns(j+1));
end
% zhs=zhs';
znsmm = zns(:)*1000; % [mm]
dzsmm = dzs(:)*1000; % [mm]
zhsmm = zhs(:)*1000; % [mm]
rootfr(:,si) = dat_root(:,2);
roottr(:,si) = dat_root(:,2);
count_nl_root=dat_root(:,2);
count_nl_root(1)=1;
nl_root(si) = sum(count_nl_root ~= 0);
end
% INITIALIZE CANOPY STATES
% ASSIGN
VERTSTRUC.zns = zns;
VERTSTRUC.dzs = dzs;
VERTSTRUC.zhs = zhs;
VERTSTRUC.znsmm = znsmm;
VERTSTRUC.dzsmm = dzsmm;
VERTSTRUC.zhsmm = zhsmm;
VERTSTRUC.rootfr = rootfr;
VERTSTRUC.roottr = roottr;
VERTSTRUC.nl_root = nl_root;
VERTSTRUC.nl_soil = nl_soil;
PARAMS.Soil.nl_soil = nl_soil;
[VERTSTRUC] = SOIL_PROPERTIES(PARAMS, VERTSTRUC);
theta_dry = VERTSTRUC.theta_dry;
porsl = VERTSTRUC.porsl;
TK_dry = VERTSTRUC.TK_dry;
TK_sol = VERTSTRUC.TK_sol;
HC_sol = VERTSTRUC.HC_sol;
%%
% INITIALIZE SOIL STATES
% initialize soil moisture
% if sum(volliqinit>=porsl) > 0
% volliqinit= porsl;
% end
% if sum(volliqinit<=theta_dry) > 0
% volliqinit= theta_dry;
% end
for ss=1:nl_soil
if volliqinit(ss)>=porsl(ss)
volliqinit(ss)= porsl(ss);
end
if volliqinit(ss)<=theta_dry(ss)
volliqinit(ss)= theta_dry(ss);
end
end
VARIABLES.SOIL.volliq = volliqinit.*ones(1, num_species);
VARIABLES.SOIL.volliqli = volliqliinit*ones(1, num_species) ; % Initial value of litter soil moisture
% initialize ice content & soil temperature
Ts = Tsinit*ones(1, num_species);
VARIABLES.SOIL.Tli = Ta_in(1)*ones(1, num_species);
VARIABLES.SOIL.Tsl = Tslint*ones(1, num_species);
VARIABLES.SOIL.Tlprev = Ta_in(1)*ones(1, num_species);
VARIABLES.SOIL.TKsoil=VERTSTRUC.TK_sol*ones(1, num_species);
% RUN CANOPY-ROOT-SOIL MODEL
% LOOP OVER EACH YEAR TO RE-INITIALIZE CANOPY/SOIL STATES FOR EACH YEAR
%% Rohit Start
%############ Crop Growth Model: Initialize the variables #############%
% Num_years = CROP_GROWTH.Num_years;
dtime=CONSTANTS.dtime;
NoDay_prev = 0;
%% RohitN end
for yy = 1:length(Run_years)
% compute the range of time steps in current year
yy;
VARIABLES.yy=yy;
% TimeBar 1/3
tff=yendinds(yy);
t00=ybeginds(yy);
hh = timebar(['Progress:', num2str(Run_years(yy)),'/', num2str(Run_years(end))],'MLCan Simulation');
tic
ybind = ybeginds(yy);
yeind = yendinds(yy);
disp (['Year: ', num2str(Run_years(yy)), '/', num2str(Run_years(end))]);
%% Rohit Start
%####################################%
if(rem(Run_years(yy), 4)== 0)
NoDay=366;
else
NoDay=365;
end
VARIABLES.NoDay=NoDay;
% ALLOCATE STORAGE FOR MODELLED VARIABLES
ALLOCATE_STORAGE;
% NoDay=yeind/24;
VARIABLES.CANOPY.gsv_sun = 0.01*ones(nl_can,nspecies);
VARIABLES.CANOPY.gsv_shade = 0.01*ones(nl_can,nspecies);
VARIABLES.CANOPY.TR = zeros(length(znc),nspecies);
VARIABLES.CANOPY.Sh2o_prof = zeros(length(znc),1);
VARIABLES.CANOPY.Tl_prev_dt = Ta_in(1) * ones(nl_can,1);
VARIABLES.SOIL.smp = VERTSTRUC.psi0 .* (VARIABLES.SOIL.volliq ./ VERTSTRUC.porsl).^(-VERTSTRUC.bsw);
% Message box for soil moisture
if sum(volliqinit>porsl) > 0
msgbox({'Initial soil moisture is higher than saturated soil moisture!', 'Solution: Modify initilal soil moisture or Increase % of sand.'},'error');
error('Initial soil moisture is higher than saturated soil moisture!')
end
if sum(volliqinit<theta_dry) > 0
msgbox({'Initial soil moisture is lower than residual soil moisture!', 'Solution: Modify initilal soil moisture or Increase % of sand.'},'error');
error('Initial soil moisture is lower than residual soil moisture!')
end
% Initialize snow moisture variables
VARIABLES.SOIL.voltotsn = zeros(1, num_species);
VARIABLES.SOIL.voltotli = zeros(1, num_species);
VARIABLES.SOIL.voliceli = zeros(1, num_species);
VARIABLES.SOIL.volliqsn = zeros(1, num_species);
VARIABLES.SOIL.volicesn = zeros(1, num_species);
VARIABLES.SOIL.zicesl = zeros(1, num_species);
VARIABLES.SOIL.zicesl_prev= VARIABLES.SOIL.zicesl;
VARIABLES.SOIL.wicesl = zeros(1, num_species);
VARIABLES.SOIL.rhosn = 1000*ones(1, num_species);
% Fixing the constant soil layer problem
VARIABLES.SOIL.volice = zeros(nl_soil, num_species);
VARIABLES.SOIL.snow_tcount = zeros(1, num_species);
VARIABLES.CANOPY.Sh2o_can_prev = 0;
% INITIALIZE ROOT POTENTIAL
for si=1:nspecies
VARIABLES.ROOT.rpp_wgt(:,si) = VARIABLES.SOIL.smp(1);
end
VARIABLES.ROOT.rpp= VARIABLES.SOIL.smp;
% PEDOTRANSFER FUNCTIONS
if SWITCHES.Pedofunctions
[VERTSTRUC] = PEDOSOIL_PROPERTIES(PARAMS, VERTSTRUC, VARIABLES);
porsl = VERTSTRUC.porsl; % POROSITY
psi0 = VERTSTRUC.psi0; % MINIMUM SOIL SUCTION = SOIL POTENTIAL AT SATURATION [mm]
bsw = VERTSTRUC.bsw; % B PARAMETER BROKS AND COREY SHAPE PARAMETER
Ksat = VERTSTRUC.HKsat; % HYDRAULIC CONDUCTIVITY AT SATURATION [mm / s]
eff_poros = VERTSTRUC.eff_poros;
end
StepsT = CONSTANTS.timestep;
Ta_tot=Ta_crop(ybind:yeind);
PPT_tot=PPT_crop(ybind:yeind);
[Max_Ta, Min_Ta, daily_ppt] = Convert_to_Daily(Ta_tot, NoDay, PPT_tot, StepsT);
Hours_Temp=hour(ybind:yeind);
intdoy = floor(round((doy_crop+1).*10^10)./10^10);
% Initialize Model Parameters
InitializePar;
%###################################%
%% Rohit End
%% LOOP OVER EACH TIME PERIOD IN YEAR yy
%for tt = ybind:yeind
for tt = ybind:1:yeind
tt;
% TimeBar 2/3
timebar(hh,(tt-t00)/(tff-t00))
timestep = tt-ybind + 1;
VARIABLES.timestep = timestep;
[VERTSTRUC, VARIABLES, rootfr] = ROOT_RESPONSE_DRY(VARIABLES,...
SWITCHES, VERTSTRUC, CONSTANTS, PARAMS, doy, smp_store);
% FORCING CONDITIONS
FORCING.doy = doy(tt);
FORCING.Rg = Rg_in(tt);
FORCING.Pa = Pa_in(tt);
if PARAMS.LWcom == 1
FORCING.LWdn = LWdn_in(tt);
end
FORCING.zen = ZEN_in(tt);
FORCING.U = U_in(tt);
FORCING.ppt = PPT_in(tt); % [mm]
FORCING.Ta = Ta_in(tt);
FORCING.ea = ea_in(tt);
FORCING.Ca = CO2base;
FORCING.ELEV=ELEV;
CROP_GROWTH.LAI_actual=LAI_in(tt);
if (~SWITCHES.soilheat_on)
VARIABLES.SOIL.Ts = (Ta_in(tt)-5)*ones(nl_soil, num_species);
else
VARIABLES.SOIL.Ts = Ts;
end
VARIABLES.SOIL.Ts = Ts;
VARIABLES.SOIL.Tsurf=Ts(1);
tdt = 24 * 60 / CONSTANTS.timestep;
tqt = tt + (CROP_GROWTH.DOY_start-1) * tdt;
% % CANOPY STRUCTURE
for si=1:1:nspecies
if SWITCHES.plants(si)
if SWITCHES.LT == 1
LAILT = LAI_in(timestep,si);
if SWITCHES.CGM ==1
VERTSTRUC.LAIzall(:,si) = CROP_GROWTH.LAIsim_can(si)*LADnorm_all(:,si);
else
VERTSTRUC.LAIzall(:,si) = LAILT*LADnorm_all(:,si);
end
else
if SWITCHES.CGM ==1
VERTSTRUC.LAIzall(:,si) = CROP_GROWTH.LAIsim_can(si).*LADnorm_all(:,si);
else
VERTSTRUC.LAIzall(:,si) = LAI_in(tt,si)*LADnorm_all(:,si);
end
end
else
VERTSTRUC.LAIzall(:,si) = zeros(nl_can,1);
end
end
if SWITCHES.CGM ==1
LADnorm = sum(VERTSTRUC.LAIzall,2)/sum(CROP_GROWTH.LAIsim_can(:));
else
LADnorm = sum(VERTSTRUC.LAIzall,2)/sum(LAI_in(tt,:));
end
%
LADnorm(isnan(LADnorm)) = 0;
%% Rohit end
%%
VERTSTRUC.LAIz = sum(VERTSTRUC.LAIzall,2);
VERTSTRUC.LADz = VERTSTRUC.LAIz ./ dzc; % Total LAD distribution
fLAIz =VERTSTRUC.LAIzall./(repmat(sum(VERTSTRUC.LAIzall,2),1,nspecies));
fLAIz(isnan(fLAIz)) = 0; % Set to zero whenever there is not LAI at a given layer
VERTSTRUC.fLAIz = fLAIz; % Fraction of LAI in each species at each relative height level
% create vinds
% 1. For the total canopy
LADmax = (max(VERTSTRUC.LAIzall,[],2)); % Maximum LAD
nvinds = find(LADmax<=0);
vinds = find(LADmax>0);
VERTSTRUC.vinds = vinds;
VERTSTRUC.nvinds = nvinds;
% LAI_ref_vert=CROP_GROWTH.LAI_ref(tt)*LADnorm_all;
% 2. For All the species
for si=1:nspecies
nvinds_all{si} = find(VERTSTRUC.LAIzall(:,si) <= 0);
vinds_all{si} = find(VERTSTRUC.LAIzall(:,si) > 0);
end
VERTSTRUC.nvinds_all = nvinds_all;
VERTSTRUC.vinds_all = vinds_all;
% INITIALIZE CANOPY ENVIRONMENT
VARIABLES.CANOPY.TAz = Ta_in(tt) * ones(nl_can,nspecies);
VARIABLES.CANOPY.CAz = CO2base * ones(nl_can,nspecies);
VARIABLES.CANOPY.EAz = ea_in(tt) * ones(nl_can,nspecies);
VARIABLES.CANOPY.PAz = Pa_in(tt) * ones(nl_can,1);
VARIABLES.CANOPY.Uz = U_in(tt) * ones(nl_can,1);
VARIABLES.CANOPY.TR_sun = zeros(nl_can,nspecies);
VARIABLES.CANOPY.TR_shade = zeros(nl_can,nspecies);
% INITIALIZE CANOPY STATES
VARIABLES.CANOPY.Tl_can_sun = VARIABLES.CANOPY.TAz;
VARIABLES.CANOPY.Tl_can_shade = VARIABLES.CANOPY.TAz;
VARIABLES.CANOPY.Tl_sun = repmat(VARIABLES.CANOPY.TAz,1,nspecies);
VARIABLES.CANOPY.Tl_shade = repmat(VARIABLES.CANOPY.TAz,1,nspecies);
VARIABLES.CANOPY.Ci_sun = repmat(0.7 * VARIABLES.CANOPY.CAz,1,nspecies);
VARIABLES.CANOPY.Ci_shade = repmat(0.7 * VARIABLES.CANOPY.CAz,1,nspecies);
%% CANOPY MODEL SOLUTION
[An_can, Ph_can, LE_can, H_can, dHcan, Rnrad_can, TR_can, ...
Fc_soil, LE_soil, H_soil, Rnrad_soil, G, Tsurf, remainsoil,remaincan,remaineco,...
Rnrad_sun, Rnrad_shade, Rnrad_eco, ...
An_sun, An_shade, LE_sun, LE_shade, H_sun, H_shade, TR_sun, TR_shade, ...
Tl_sun, Tl_shade, Tl_sun_up, Tl_shade_up, Tl_sun_lo, Tl_shade_lo, psil_sun, psil_shade, gsv_sun, gsv_shade, fsvg_sun, fsvm_sun,...
fsvg_shade, fsvm_shade, Ci_sun, Ci_shade, CAz, TAz, EAz, Uz, gbv_sun, gbh_sun, gbv_shade, gbh_shade, ...
LAI_sun, LAI_shade, fsun, fshade, ...
Ph_limit_sun, Jc_C3_sun, Jj_C3_sun, Js_C3_sun, Jc_C4_sun, Jj_C4_sun, Js_C4_sun, ...
Ph_limit_shade, Jc_C3_shade, Jj_C3_shade, Js_C3_shade, Jc_C4_shade, Jj_C4_shade, Js_C4_shade, ...
PARabs_sun, PARabs_shade, NIRabs_sun, NIRabs_shade, SWout, ...
LWabs_can, LWemit_soil, LWemit_can, LWemit_sun, LWemit_shade, LWout, LWoutM, RH_soil, fdiff, ...
Sh2o_prof, Sh2o_can, ppt_ground, Ch2o_prof, Ch2o_can, Evap_prof, Evap_can, ...
dryfrac, wetfrac, Vz, VARIABLES, FORCING,...
SWcandir_in, SWcandir_out, SWcandif_in, SWcandif_out, SWsoildir_in, SWsoildir_out,...
SWsoildif_in, SWsoildif_out, LWabs_canM, LWabs_soilM, LSshaCON, LSsunCON] = ...
CANOPY_MODEL(SWITCHES, VERTSTRUC, FORCING, PARAMS, VARIABLES, CONSTANTS);
An_can(An_can<-40)=-40;
Ph_can(Ph_can<-40)=-40;
% VARIABLES.CANOPY.Ph_can_all
CROP_GROWTH.ph_can = VARIABLES.CANOPY.Ph_can_all;
%% % Rohit Start
%########## Using Crop Growth Model##########
if SWITCHES.CGM ==1
%-------------GDD and Onset selection (SM based)----------%
for si=1:num_species
% if SWITCHES.plants ==1
TempBase = PARAMS.CGM.GDDTBASE(si);
TempCut = PARAMS.CGM.GDDTCUT(si);
[doy1, doy2, doy3, doy4, doy5, plantingDate, harvestingDate,...
CROP_GROWTH, VARIABLES] = Growing_Degree_Days(CROP_GROWTH,...
VARIABLES, CONSTANTS, PARAMS, SWITCHES, Max_Ta, Min_Ta, NoDay,...
TempCut, TempBase, yy, si, tt);
CROP_GROWTH.plantingDate(si) = plantingDate;
CROP_GROWTH.harvestingDate(si) = harvestingDate;
CROP_GROWTH.doy1(si)=doy1;
CROP_GROWTH.doy2(si)=doy2;
CROP_GROWTH.doy3(si)=doy3;
CROP_GROWTH.doy4(si)=doy4;
CROP_GROWTH.doy5(si)=doy5;
Tl_mean_cgm = VARIABLES.CANOPY.Tl_mean(si);
ph_can_cgm= CROP_GROWTH.ph_can(si);
%------------- Biomass Estimation -----------------%
[CROP_GROWTH] = Biomass_Estimation( CROP_GROWTH, ...
CONSTANTS, PARAMS, ph_can_cgm, Tl_mean_cgm, doy1, ...
doy2, doy3, doy4, doy5, si, tt);
DR = CROP_GROWTH.DeathRate(si)-VARIABLES.CANOPY.DeathRate_prev(si);
RDR = CROP_GROWTH.RootDeathRate(si)-VARIABLES.CANOPY.RootDeathRate_prev(si);
DR(DR<0)=0;
RDR(RDR<0)=0;
VARIABLES.CANOPY.DeathRate(si)=DR;
VARIABLES.CANOPY.RootDeathRate(si)=RDR;
% end
end
VARIABLES.CANOPY.DeathRate_prev = CROP_GROWTH.DeathRate;
VARIABLES.CANOPY.RootDeathRate_prev = CROP_GROWTH.RootDeathRate;
else
VARIABLES.CANOPY.DeathRate = zeros(1,num_species);
VARIABLES.CANOPY.RootDeathRate = zeros(1,num_species);
end
for si=1:num_species
if tqt>=CROP_GROWTH.plantingDate(si)*tdt && tqt<=CROP_GROWTH.harvestingDate(si)*tdt
SWITCHES.plants(si)=1;
else
SWITCHES.plants(si)=0;
end
end
%% Rohit Start
%########## Irrigation selection ##########%
Irrigation_Selection;
%##############################%
%###########################%
%% Rohit end
%%
% SOLUTION OF SNOW-LITTER PACK DYNAMICS
for si=1:num_species
if SWITCHES.litter(si)
[VARIABLES] = FLUXES_WATER_SOIL_LITTER (PARAMS, VARIABLES, CONSTANTS, FORCING, SWITCHES, si);
else
[VARIABLES] = FLUXES_WATER_SOIL (PARAMS, VARIABLES, CONSTANTS, FORCING, SWITCHES, si);
end
end
% assign
% qinfl = VARIABLES.SOIL.qinfl;
% qinflL = VARIABLES.SOIL.qinfl;
% net_qinflL = VARIABLES.SOIL.net_qinflL;
% drainlitter = VARIABLES.SOIL.drainlitter;
% volliqli = VARIABLES.SOIL.volliqli;
% Implicit Solution
if (SWITCHES.ns)
if tt == 321
stop = 1;
end
[rpp,rpp_wgt,krad,kax,dwat,smp,bk,hk, ...
qlayer,layeruptake,layeruptake_all,mberrormm,type,...
hor_drainage, hor_drainage_lay,flux_Ss]=ROOTSOIL(SWITCHES,...
VERTSTRUC, PARAMS, VARIABLES, CONSTANTS, nspecies);
VARIABLES.SOIL.flux_Ss =flux_Ss;
VARIABLES.ROOT.rpp = rpp;
VARIABLES.ROOT.rpp_wgt = rpp_wgt;
VARIABLES.ROOT.krad = krad;
VARIABLES.SOIL.type = type;
VARIABLES.ROOT.kax= kax;
else
for si=1:num_species
if (SWITCHES.HR_on)
[rpp, rpp_wgt, krad, kax] = ROOTS_HR(SWITCHES, VERTSTRUC, PARAMS, VARIABLES, si);
else
[rpp, rpp_wgt, krad, kax] = ROOTS_NOHR(SWITCHES, VERTSTRUC, PARAMS, VARIABLES, si);
end
VARIABLES.ROOT.rpp(:,si) = rpp;
VARIABLES.ROOT.rpp_wgt(si) = rpp_wgt;
VARIABLES.ROOT.krad(:, si) = krad;
VARIABLES.ROOT.kax(:, si)= kax;
% Soil Moisture Solution
[dwat, smp, hk, smp_wgt, thsatfrac_wgt, qlayer] = ...
SOILMOISTURE(SWITCHES, VERTSTRUC, PARAMS, VARIABLES, CONSTANTS, si);
end
VARIABLES.SOIL.type=[0,0,0];
VARIABLES.SOIL.flux_Ss=zeros(nl_soil,1);
layeruptake = (smp - VARIABLES.ROOT.rpp).*VARIABLES.ROOT.krad;
layeruptake_all = layeruptake;
hor_drainage = 0;
hor_drainage_lay = zeros(length(smp),1);
mberrormm = nan;
end
%
% Update Volumetric Liquid Content
volliq = VARIABLES.SOIL.volliq;
for si=1:num_species
volliq(:,si) = volliq(:,si) + dwat(:,si);
volliq(:,si) = max(theta_dry, volliq(:,si));
volliq(:,si) = min(VERTSTRUC.eff_poros, volliq(:,si));
end
% ASSIGN
VARIABLES.SOIL.dwat = dwat;
VARIABLES.SOIL.volliq = volliq;
VARIABLES.SOIL.smp = smp;
VARIABLES.SOIL.qlayer = qlayer;
VARIABLES.SOIL.hor_drainage = hor_drainage;
VARIABLES.SOIL.hor_drainage_lay = hor_drainage_lay;
VARIABLES.SOIL.layeruptake = layeruptake;
VARIABLES.SOIL.layeruptake_all = layeruptake_all;
% RECOMPUTE MASS BALANCE INCLUDING THE FLUX BACK FROM
% INFILTRATION SOLUTION
for si=1:num_species
if SWITCHES.litter(si)
[VARIABLES] = FLUXES_WATER_SOIL_LITTER_BACK (VARIABLES, VERTSTRUC,...
PARAMS, CONSTANTS, si);
else
[VARIABLES] = FLUXES_WATER_SOIL_BACK (VARIABLES,...
VERTSTRUC, PARAMS, CONSTANTS, si);
end
end
% assign
qinfl = VARIABLES.SOIL.qinfl;
qinflL = VARIABLES.SOIL.qinfl;
net_qinflL = VARIABLES.SOIL.net_qinflL;
drainlitter = VARIABLES.SOIL.drainlitter;
volliqli = VARIABLES.SOIL.volliqli;
if (SWITCHES.soilheat_on)
% Soil Temperature Solution
volice = 0;
for si=1:num_species
Ginto = VARIABLES.SOIL.Gs(si);
[VARIABLES] = SOILHEAT (Ginto, VARIABLES, VERTSTRUC, PARAMS, CONSTANTS, si);
end
Ts = VARIABLES.SOIL.Ts;
cpv = VARIABLES.SOIL.cpv;
end
% ************************************************************************
% [PARAMS, VARIABLES] = Nitrogen_Plant(PARAMS, FORCING, VARIABLES, CONSTANTS,nspecies);
% ************************************************************************
if SWITCHES.soilCN_on
% VARIABLES.Fertilized=1;
%% RohitN Start
if SWITCHES.NCanAlMod ==1
%
% td = 24 * 60 / CONSTANTS.timestep;
% tq = tt + (CROP_GROWTH.DOY_start-1) * td;
ph_type = PARAMS.Photosyn.ph_type;
time_inter = 15;
optimization=1;
for si=1:num_species
if (ph_type(si)~=1)
VARIABLES.si=si;
N_CAN_model;
VARIABLES.CANOPY.Fert_req=Fert_req;
end
end
end
% Fertilizer Selection
Select_Fert;
% For nitrogen remobilization
if tt == 1
STORAGE.UP_nit_m2_store = zeros(nl_soil,nl_soil,1);
STORAGE.UP_amm_m2_store = zeros(nl_soil,nl_soil,1);
end
[VARIABLES, SWITCHES, PARAMS, FORCING] = ...
core_N(rootfr, PARAMS, SWITCHES, VARIABLES, FORCING, CONSTANTS, VERTSTRUC, STORAGE);
CN_STORE_DATA ();
end
if (SWITCHES.entropy_on)
[SSresults] = ...
COMPUENTROPY (SWcandir_in, SWcandir_out, SWcandif_in, SWcandif_out,...
SWsoildir_in, SWsoildir_out, SWsoildif_in, SWsoildif_out,...
SWout, fdiff,LWabs_canM, LWabs_soilM, LWemit_soil, LWemit_sun, LWemit_shade,...
LWout, Tsurf, FORCING,SWITCHES, CONSTANTS, PARAMS,...
VARIABLES, VERTSTRUC);
end
[VARIABLES] = MASS_BALANCE (VARIABLES, CONSTANTS, PARAMS, FORCING, SWITCHES, VERTSTRUC, tt);
STORE_DATA;
end
NoDay_prev = NoDay_prev + NoDay; % Previous year NoDay
toc
% Timebar 3/3
close(hh);
SaveResFiles;
end