-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathSlowWire.py
executable file
·241 lines (197 loc) · 6.99 KB
/
SlowWire.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
"""
This file holds the SlowWire communication protocol class
"""
#!/usr/bin/env python
from __future__ import print_function
from __future__ import division
from builtins import hex
from builtins import range
from builtins import object
from past.utils import old_div
import time # this is in python 2.7 which does not have the routine "time.perf_counter" in python 2.7 need a way to operate
import sys
import logging
logger = logging.getLogger("hydrosys4."+__name__)
try:
# Python >= 3.3
from time import perf_counter
default_timer = time.perf_counter
except ImportError:
# Python < 3.3
if sys.platform == "win32":
# On Windows, the best timer is time.clock()
default_timer = time.clock
else:
# On most other platforms the best timer is time.time()
default_timer = time.time
import RPi.GPIO as GPIO
class SlowWire(object):
"""
HX711 represents chip for reading load cells.
"""
def __init__(self,dout_pin): # accept integer
self._dout_pin = dout_pin
self._t_init_low=0.020 # s
self._t_wait_sensor=2 # s
GPIO.setup(self._dout_pin, GPIO.OUT) # set pin to out, and to level high
GPIO.output(self._dout_pin, 1)
self.MAXCOUNT=1000
self.MAXSAMPLING=10000
def read_bytes(self): # return a tuple with boolean for OK and array of bytes (isOK, List)
MAXCOUNT=self.MAXCOUNT
MAXSAMPLING=self.MAXSAMPLING
#Set pin to output.
GPIO.setup(self._dout_pin, GPIO.OUT)
GPIO.output(self._dout_pin, 1)
time.sleep(0.001)
# Set pin low for t_init_low milliseconds. This will tell the sensor to start measuring and get beck the data
GPIO.output(self._dout_pin, 0)
time.sleep(self._t_init_low)
GPIO.output(self._dout_pin, 1)
time.sleep(0.001)
#Set pin to imput, ready to receive data. Configuration pull-up
GPIO.setup(self._dout_pin, GPIO.IN, pull_up_down=GPIO.PUD_UP)
cyclewait=0.001
numcycles=int(old_div(self._t_wait_sensor,cyclewait))
print ("numero di cicli --------------------------->", numcycles)
# Wait for sensor to pull pin low.
count = 0
while (GPIO.input(self._dout_pin))and(numcycles>count):
count=count+1
time.sleep(cyclewait)
print ("Conta --------------------------->", count)
if (count >= numcycles):
# Timeout waiting for response.
print ("error reading the SlowWire sensor: Wait too long for sensor answer")
logger.error("error reading the SlowWire sensor: Wait too long for sensor answer")
return False,0
# Record pulse widths for the self.PULSES bits expected from the sensor
LowpulseCounts=[]
HighpulseCounts=[]
n=MAXSAMPLING
exitcondition=False
while (n>0)and(not exitcondition):
#for i in range(0,self.PULSES*2,2): # i starts from zero and increase by +2
# Count how long pin is low and store in pulseCounts[i]
thispulsecount=0
while (not GPIO.input(self._dout_pin))and(not exitcondition):
thispulsecount=thispulsecount+1
time.sleep(0.0001)
if (thispulsecount >= MAXCOUNT):
# Timeout waiting for pulse lenght.
exitcondition=True
if (not exitcondition)and(thispulsecount):
LowpulseCounts.append(thispulsecount)
# Count how long pin is high and store in pulseCounts[i+1]
thispulsecount=0
while GPIO.input(self._dout_pin)and(not exitcondition):
thispulsecount=thispulsecount+1
time.sleep(0.0001)
if (thispulsecount >= MAXCOUNT):
# Timeout waiting for pulse lenght.
exitcondition=True
if (not exitcondition)and(thispulsecount):
HighpulseCounts.append(thispulsecount)
print ("High pulse count ------------------------------------>", HighpulseCounts)
#check data consistency:
if len(HighpulseCounts)>7:
print ("lenghts High=%d Low=%d ", len(HighpulseCounts),len(LowpulseCounts))
if not ((len(HighpulseCounts)+1)==len(LowpulseCounts)):
#data mismatch
print ("error reading the SlowWire sensor: Data mismatch ")
logger.error("error reading the SlowWire sensor: Data mismatch ")
return False,0
else:
print ("error reading the SlowWire sensor: Insufficient data")
logger.error("error reading the SlowWire sensor: Insufficient data")
return False,0
# Compute the average low pulse width in terms of number of samples
# Ignore the first readings because it is not relevant.
threshold = 0
for i in range(1,len(LowpulseCounts)): # i starts from 2 and increase by +2
threshold = threshold + LowpulseCounts[i]
threshold /= len(LowpulseCounts)-1
threshold /=2
print("Slow Wire Threshold: -------------------------------------------- ", threshold)
#Interpret each high pulse as a 0 or 1 by comparing it to the average size of the low pulses.
data=[]
databyte=0
# skip the first 1 pulse
for i in range(1,len(HighpulseCounts)):
databyte = (databyte >> 1)
if (HighpulseCounts[i] <= threshold):
# One bit for long pulse.
databyte |= 0x80
# Else zero bit for short pulse.
if (i%8==0): # got one byte
data.append(databyte)
databyte=0
print("Slow Wire Data: -------------------------------------------- ", data)
for item in data:
print("The hexadecimal data" , hex(item))
# Verify checksum of received data.
if len(data)>=2:
if self.checkCRC(data):
print ("CRC OK --------------------")
data.pop() # remove last byte from list as this is the CRC
return True, data
else:
print ("error reading the SlowWire sensor: Data Checksum error")
logger.error("error reading the SlowWire sensor: Data Checksum error")
return False,0
else:
print ("error reading the SlowWire sensor: Not enough bites of data")
logger.error("error reading the SlowWire sensor: Not enough bites of data")
return False,0
def TwoBytesOneInt(self, byteslist): # return array of int grouping two bytes togeter
# return it to integer
intlist=[]
for i in range(0,len(byteslist)-1,2):
result = (byteslist[i+1] << 8) + byteslist[i]
intlist.append(result)
# debugging
print("Int Data: -------------------------------------------- ", intlist)
return intlist
def read_uint(self):
uintlist=[]
isOK, byteslist = self.read_bytes()
if isOK:
uintlist = self.TwoBytesOneInt(byteslist)
if uintlist:
return True, uintlist
return False, 0
def AddToCRC(self, b, crc):
generator=0x1D
crc ^= b
for i in range(8):
if ((crc & 0x80) != 0):
crc = (crc << 1) ^ generator
else:
crc <<= 1
crc= crc & 0xFF
return crc
def checkCRC(self, byteslist): # input is a list of bytes, the last byte should be the CRC code sent by the transmitter
check = 0x00
for i in byteslist:
check = self.AddToCRC(i, check)
if (check==0):
return True
return False
if __name__ == '__main__':
"""
This is an usage example, connected to GPIO PIN 17 (BCM)
"""
PINDATA=18
GPIO.setmode(GPIO.BCM)
Sensor_bus = SlowWire(dout_pin=PINDATA)
#print "Starting sample reading"
ReadingAttempt=3
isok=False
while (ReadingAttempt>0)and(not isok):
isok,datalist = Sensor_bus.read_uint()
if isok:
data=datalist[0]
print ("*************** SlowWire data: *********************** ",data)
else:
print ("error")
ReadingAttempt=ReadingAttempt-1