-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconquer_core.py
389 lines (306 loc) · 15.6 KB
/
conquer_core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
######## IMPORTS
import os
import sys
from time import time
import torch
import torch.nn as nn
from IPython import embed
# import gluonnlp as nlp
import numpy as np
from tqdm import tqdm
from collections import OrderedDict
from transformers import AdamW
from transformers.optimization import get_cosine_schedule_with_warmup
from logger import FileLogger, TensorboardLogger
from utils.metrics import exact_match
from utils.functions import set_random_seed
from utils.datasets import load_datasets
from models import model_builder
from config import load_config, update_params
import warnings
warnings.filterwarnings("ignore")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
conf = load_config()
#####################################################
# Update params #
#####################################################
argv = sys.argv[1:]
if len(argv) > 0:
cmd_arg = OrderedDict()
argvs = ' '.join(sys.argv[1:]).split(' ')
for i in range(0, len(argvs), 2):
arg_name, arg_value = argvs[i], argvs[i + 1]
arg_name = arg_name.strip('-')
cmd_arg[arg_name] = arg_value
conf = update_params(conf, cmd_arg)
gpu = str(conf.base.gpus)
os.environ["CUDA_VISIBLE_DEVICES"] = gpu
device = "cuda:%s" % conf.base.gpus if torch.cuda.is_available() else "cpu"
set_random_seed(conf.base.seed)
#####################################################
# Load BERT #
#####################################################
print(f'Load BERT model... {conf.model.bert_model}')
print(f'> You are now using HuggingFace library.')
from transformers import AutoTokenizer, AutoModel, AutoConfig
bertmodel = AutoModel.from_pretrained(conf.model.bert_model)
tokenizer = AutoTokenizer.from_pretrained(conf.model.bert_model)
#####################################################
# Load dataset #
#####################################################
train_file = os.path.join(conf.dataset.datadir, 'sample/train.tsv')
valid_file = os.path.join(conf.dataset.datadir, 'sample/valid.tsv')
test_file = os.path.join(conf.dataset.datadir, 'sample/test.tsv')
print('Load dataset...')
train_dataset, valid_dataset, test_dataset = load_datasets(
trainfile=train_file,
validfile=valid_file,
testfile=test_file,
bert_tokenizer=tokenizer,
ori_idx=0,
reduced_idx=1,
**conf.dataset)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=conf.exp.batch_size, num_workers=10, shuffle=True)
valid_dataloader = torch.utils.data.DataLoader(valid_dataset, batch_size=conf.exp.batch_size, num_workers=10)
test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=conf.exp.batch_size, num_workers=10)
#####################################################
# Build BERT #
#####################################################
print('Build BERT-Reduction model...')
model_name = 'bert_tree' if conf.model.tree_transformer else 'bert'
model = model_builder(model_name, bert=bertmodel, device=device, **conf.model).to(device)
model.conf = conf
#####################################################
# Set up training #
#####################################################
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
## Setting parameters
optimizer = AdamW(optimizer_grouped_parameters, lr=conf.exp.learning_rate)
criterion = nn.BCEWithLogitsLoss(reduction='none')
criterion_core = nn.MSELoss() if conf.model.pred_num_core else None
t_total = len(train_dataloader) * conf.exp.num_epochs
warmup_step = int(t_total * conf.exp.warmup_ratio)
print(f"truncated_loss = {conf.model.truncated_loss}")
if conf.model.truncated_loss:
if conf.exp.forget_rate is None:
forget_rate=0.1
else:
forget_rate = conf.exp.forget_rate
rate_schedule = np.ones(conf.exp.num_epochs)*forget_rate
rate_schedule[:conf.exp.num_gradual] = np.linspace(0, forget_rate**conf.exp.exponent, conf.exp.num_gradual)
if warmup_step > 0:
scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=warmup_step, num_training_steps=t_total)
else:
scheduler = None
#### File logger
file_logger = FileLogger(conf.base.save_dir, conf.base.exp_name)
log_dir = file_logger.log_dir
print(f'log & save model in {log_dir}...')
#### Tensorboard logger
if conf.base.tensorboard:
tensorboard = TensorboardLogger(
log_dir=log_dir,
experiment_name=conf.base.exp_name,
hparams=dict(conf),
log_graph=False
)
else:
tensorboard = None
def train_epoch(model, train_dataloader, criterion, optimizer, scheduler, max_grad_norm=0.0, verbose=0,
pred_num_core=False, criterion_core=None, contrastive=False, augment_ratio=0.0, augment_lambda=0.1, device='cpu', truncated_loss=False, forget_rate=0.1):
model.train()
epoch_loss = 0.0
elapsed = {
'data': 0.0,
'forward': 0.0,
'backward': 0.0,
'step': 0.0
}
for batch_id, batch in enumerate(tqdm(train_dataloader, total=len(train_dataloader))):
optimizer.zero_grad()
token_ids = batch['original_ids'].long().to(device)
valid_length = batch['original_valid_length'].to(device)
segment_ids = batch['original_seg'].long().to(device)
label = batch['label'].to(device)
mask = batch['mask'].to(device)
model_out = model(token_ids, valid_length, segment_ids)
token_out = model_out['token_out']
_token_loss = criterion(token_out, label)
if truncated_loss:
token_loss = (_token_loss * mask).sum(axis=1)
_token_loss_mean = token_loss/(valid_length.to(device)-2)
idx_token_loss_sorted = np.argsort(_token_loss_mean.data.cpu()).cuda()
_token_loss_sorted = _token_loss_mean[idx_token_loss_sorted]
remember_rate = 1 - forget_rate
num_remember = int(remember_rate * len(_token_loss_sorted))
import pickle
idx_token_update = idx_token_loss_sorted[:num_remember]
with open('idf_token_update_epoch0.pkl', 'wb') as f:
pickle.dump(idx_token_update, f, protocol=4)
loss_update = criterion(token_out[idx_token_update], label[idx_token_update])
if augment_ratio > 0:
augment_mask = batch['augment_mask'].to(device)
masked_token_loss = (loss_update * mask[idx_token_update]).sum(1)
loss_update = (masked_token_loss * (1 - augment_mask) + masked_token_loss * augment_mask * augment_lambda).mean()
else:
loss_update = (loss_update * mask[idx_token_update]).sum(1).mean()
if pred_num_core:
num_core_out = model_out['num_core_out']
num_core = label.sum(1).float()
num_remove = valid_length-num_core
core_loss = criterion_core(num_core_out, num_remove)
loss = loss_update + 0.1*core_loss
else:
loss = loss_update
if contrastive:
cont_temp = model.conf.model.cont_temp # 0.01, 0.1, 1, 10
cont_lambda = model.conf.model.cont_lambda
cos_sim = model_out['cos_sim'] # (B, 1, L)
neg_cos = cos_sim.masked_fill(mask.bool().unsqueeze(1) != True, -1e9) # (B, 1, L) # mask out padding
neg_cos = neg_cos.masked_fill(label.bool().unsqueeze(1) == True, -1e9) # (B, 1, L) # mask out positive
pos_cos = cos_sim.masked_fill(label.bool().unsqueeze(1) != True, -1e9) # (B, 1, L) # mask out negative
cons_pos = torch.exp(pos_cos/ cont_temp ) # (B, 1, L)
cons_neg = torch.sum(torch.exp(neg_cos / cont_temp ), dim=2) # (B, 1)
cons_div = cons_pos / (cons_neg.unsqueeze(-1) + cons_pos) # (B, 1, L)
cons_div = cons_div.masked_fill(mask.bool().unsqueeze(1) != True, 1) # (B, 1, L) # mask out padding
cons_div = cons_div.masked_fill(label.bool().unsqueeze(1) != True, 1) # (B, 1, L) # mask out negative
# loss_contrastive = -torch.log(cons_div).mean()
loss_contrastive = -torch.log(cons_div).squeeze(1).sum(1).mean()
loss = loss + cont_lambda * loss_contrastive
else:
if augment_ratio > 0:
augment_mask = batch['augment_mask'].to(device)
masked_token_loss = (_token_loss * mask).sum(1)
token_loss = (masked_token_loss * (1 - augment_mask) + masked_token_loss * augment_mask * augment_lambda).mean()
else:
token_loss = (_token_loss * mask).sum(1).mean()
if pred_num_core:
num_core_out = model_out['num_core_out']
num_core = label.sum(1).float()
num_remove = valid_length-num_core
core_loss = criterion_core(num_core_out, num_core)
loss = token_loss + core_loss
else:
loss = token_loss
loss.backward()
if max_grad_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
optimizer.step()
if scheduler is not None:
scheduler.step()
epoch_loss += loss.item()
if verbose > 0 and (batch_id + 1) % verbose == 0:
print('\tbatch %d loss:' % (batch_id+1), loss.item())
return epoch_loss
def evaluate(model, test_dataloader, threshold=0.5):
model.eval()
num_test = 0.0
em = 0.0
confusion_matrix = np.zeros((2, 2))
with torch.no_grad():
for batch_id, batch in enumerate(tqdm(test_dataloader, total=len(test_dataloader))):
token_ids = batch['original_ids'].long().to(device)
valid_length = batch['original_valid_length']
segment_ids = batch['original_seg'].long().to(device)
label = batch['label']
mask = batch['mask']
model_out = model(token_ids, valid_length, segment_ids)
out = torch.sigmoid(model_out['token_out'])
for i in range(len(out)):
original_id = token_ids[i].cpu().numpy()
out_prob = out[i]
original_tokens = tokenizer.convert_ids_to_tokens(original_id)
token_start_idx = 0
for j, token in enumerate(original_tokens[1:], 1):
if token == '[SEP]':
break
if token.startswith('##'):
continue
else:
if token_start_idx > 0:
out_prob[token_start_idx:j] = max(out_prob[token_start_idx: j])
token_start_idx = j
out[i] = out_prob
# Token acc
pred = (out > threshold).detach().float().cpu().numpy()
label = label.numpy()
mask = mask.numpy()
em += exact_match(pred, label, mask)
num_test += len(pred)
ret = OrderedDict({'EM': em/num_test})
return ret
################################ MAIN
if __name__ == "__main__":
try:
file_logger.log_hparams(dict(conf))
file_logger.save_hparams()
print('Training begins...')
best_em = -1
best_epoch = -1
best_ckpt = None
for epoch in range(1, conf.exp.num_epochs + 1):
if conf.dataset.augment_ratio > 0:
train_dataloader.dataset.augment_data(conf.dataset.augment_type, conf.dataset.augment_ratio, conf.dataset.num_truncate)
epoch_train_dataloader = train_dataloader
# Training phase
train_start = time()
if conf.model.truncated_loss:
epoch_loss = train_epoch(model, epoch_train_dataloader, criterion, optimizer, scheduler,
conf.exp.max_grad_norm, conf.base.verbose, conf.model.pred_num_core, criterion_core, conf.model.contrastive,
conf.dataset.augment_ratio, conf.dataset.augment_lambda, device, conf.model.truncated_loss, rate_schedule[epoch-1])
else:
epoch_loss = train_epoch(model, epoch_train_dataloader, criterion, optimizer, scheduler,
conf.exp.max_grad_norm, conf.base.verbose, conf.model.pred_num_core, criterion_core, conf.model.contrastive,
conf.dataset.augment_ratio, conf.dataset.augment_lambda, device)
train_finished = time()
train_elapsed = train_finished - train_start
epoch_dict = OrderedDict({'epoch': epoch})
if epoch % conf.base.eval_interval == 0:
eval_start = time()
valid_scores = evaluate(model, valid_dataloader, threshold=conf.exp.threshold)
eval_finished = time()
eval_elapsed = eval_finished - eval_start
if tensorboard is not None:
tensorboard.log_metric_from_dict({'train_loss': epoch_loss}, epoch, prefix='Loss')
tensorboard.log_metric_from_dict(valid_scores, epoch, prefix='Valid')
epoch_dict.update(valid_scores)
epoch_dict['train_loss'] = epoch_loss
epoch_dict['elapsed'] = '%.2f (%.2f + %.2f)' % (train_elapsed + eval_elapsed, train_elapsed, eval_elapsed)
file_logger.log_metrics(epoch_dict,epoch)
if valid_scores['EM'] > best_em:
best_em = valid_scores['EM']
best_epoch = epoch
best_ckpt = os.path.join(log_dir, f'best_ckpt.p')
torch.save(model.state_dict(), best_ckpt)
else:
if tensorboard is not None:
tensorboard.log_metric_from_dict({'train_loss': epoch_loss}, epoch, prefix='Loss')
epoch_dict['train_loss'] = '%.2f' % epoch_loss
epoch_dict['elapsed'] = '%.2f' % train_elapsed
file_logger.log_metrics(epoch_dict, prefix='val_')
print_dict = {k: '%.4f' % v if isinstance(v, float) else v for k, v in epoch_dict.items()}
print(dict(print_dict))
if conf.base.save_model and epoch % conf.base.ckpt_interval == 0:
torch.save(model.state_dict(), os.path.join(log_dir, f'epoch_{epoch}_ckpt.p'))
print('Restore best model...')
model.load_state_dict(torch.load(best_ckpt))
print('Evaluate on test set...')
test_scores = evaluate(model, test_dataloader, threshold=conf.exp.threshold)
final_dict = {
'epoch': 'final test',
**test_scores
}
print(dict(final_dict))
file_logger.log_metrics(final_dict)
file_logger.save()
if tensorboard is not None:
tensorboard.log_metric_from_dict(test_scores, epoch, prefix='Test')
tensorboard.log_hparams(dict(conf), test_scores)
except KeyboardInterrupt:
print('[KEYBOARD INTERRUPT] Save log and exit...')
file_logger.save()