-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.sage
332 lines (268 loc) · 12.7 KB
/
models.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
def model_F_CICO(P, n_rounds, final_ll=True, ordering=None, debug=False):
"""
Model F from the Anemoi paper. Without final linear layer.
CICO variables (first l inputs, first l outputs) inserted directly.
Inputs:
P Anemoi permutation
n_rounds Number of rounds
ordering 1: x1 > y0 > x2 > y1 > ... > x{N-1} > y{N-2} > y{N-1} > y{N} (custom, good)
2: x1 > x2 > ... > x{N-1} > y0 > y1 > ... > y{N} (original, ok)
3: x1 < x2 < ... < x{N-1} < y0 < y1 < ... < y{N} (original reversed, bad)
debug Debug flag for intermediate output
"""
P.n_rounds = n_rounds
# If no ordering is specified, use custom (good) one.
if ordering is None:
ordering = 1
if debug:
print("\n" + "="*100)
print(P)
#------------------------------------------------------------------------------------------
# Variables (all variables, including CICO variables and unused output variables)
#------------------------------------------------------------------------------------------
# 2l input variables per round, 2l additional variables after last round
num_vars = 2*P.n_cols*(P.n_rounds+1)
x_vars = []
y_vars = []
all_vars = []
for r in range(0, P.n_rounds+1):
x_vars.append([f"X{r:02d}{i:02d}" for i in range(0, P.n_cols)])
y_vars.append([f"Y{r:02d}{i:02d}" for i in range(0, P.n_cols)])
all_vars += x_vars[-1]
all_vars += y_vars[-1]
assert(len(all_vars) == num_vars)
# Polynomial ring
poly_ring = PolynomialRing(base_ring=P.F, names=all_vars, order='degrevlex')
if debug:
print("-"*100)
print(poly_ring)
# Dictionary to use for equations
dict_vars = {"X" : [], "Y" : []}
for r in range(0, P.n_rounds+1):
dict_vars["X"].append([])
dict_vars["Y"].append([])
for i in range(0, P.n_cols):
dict_vars["X"][r].append(poly_ring(f"X{r:02d}{i:02d}"))
dict_vars["Y"][r].append(poly_ring(f"Y{r:02d}{i:02d}"))
if debug:
for var_name in dict_vars:
print(dict_vars[var_name])
#------------------------------------------------------------------------------------------
# Equations
#------------------------------------------------------------------------------------------
# Equations that all the intermediate values must satisfy. Implicitely relies on open Flystel.
all_eqs = []
# 2l equations per round, in last round only equations for l rightmost variables
num_eqs = 2*P.n_cols*(P.n_rounds)
# Helper functions
E = lambda x : (x)**P.alpha # alpha fixed to what is defined by permutation P
Q = lambda x, c : P.beta * (x)**P.QUAD + c # either squared or cubed, depending on characteristic (or custom)
Qd = lambda x : Q(x, P.delta)
Qg = lambda x : Q(x, P.F.zero()) # gamma is zero
for r in range(0, P.n_rounds):
# Round inputs
x, y = dict_vars["X"][r], dict_vars["Y"][r]
# Round constant addition
x = [x[i] + P.C[r][i] for i in range(0, P.n_cols)]
y = [y[i] + P.D[r][i] for i in range(0, P.n_cols)]
# Linear Layer (outputs = inputs to open flystel)
x, y = P.linear_layer(x, y)
# Outputs of open flystel (= round outputs)
u = dict_vars["X"][r+1]
v = dict_vars["Y"][r+1]
# Last full round and final linear layer
if (r == P.n_rounds - 1) and final_ll:
# Invert last linear layer
u, v = P.inv_linear_layer(u, v)
# Exploit open flystel verification property: H(x,y) = u,v <=> V(v,y) = (x,u)
for i in range(0, P.n_cols):
all_eqs.append(Qg(y[i]) + E(y[i]-v[i]) - x[i])
all_eqs.append(Qd(v[i]) + E(y[i]-v[i]) - u[i])
# Final linear layer application
#if final_ll:
# x, y = dict_vars["X"][P.n_rounds], dict_vars["Y"][P.n_rounds]
# x, y = P.linear_layer(x, y)
# u, v = dict_vars["X"][P.n_rounds+1], dict_vars["Y"][P.n_rounds+1]
# for i in range(0, P.n_cols):
# all_eqs.append(x[i]-u[i])
# all_eqs.append(y[i]-v[i])
assert(len(all_eqs) == num_eqs)
if debug:
print("-"*100)
print("Number of equations: ", num_eqs)
print("Number of variables: ", num_vars)
print("-"*100)
#for eqn in all_eqs:
# print(f"deg = {eqn.degree()}, ", eqn)
print(f"Degrees: {[f.degree() for f in all_eqs]}")
#------------------------------------------------------------------------------------------
# CICO constraints according to anemoi paper (l inputs x, l outputs x)
#------------------------------------------------------------------------------------------
cico_vars = {cico_var : P.F.zero() for cico_var in dict_vars["X"][0] + dict_vars["X"][-1]}
if debug:
print("-"*100)
print("CICO variables: ", cico_vars)
F_CICO = [f.specialization(cico_vars) for f in all_eqs]
#------------------------------------------------------------------------------------------
# Variable ordering
#------------------------------------------------------------------------------------------
# REMARK: ONLY CHECKED FOR l=1
#print(f"Apply ordering {ordering}")
# ORDERING 1: custom (good)
if (P.n_cols == 1) and ordering == 1:
# x1 > y0 > x2 > y1 > ... > x{N-1} > y{N-2} > y{N-1} > y{N}
V_CICO = flatten([[x,y] for x,y in zip(flatten(dict_vars['X'][1:-1]),flatten(dict_vars['Y'][:-2]))])
V_CICO += dict_vars['Y'][-2]
V_CICO += dict_vars['Y'][-1]
# ORDERING 2: original (ok)
elif (P.n_cols == 1) and ordering == 2:
# x1 > x2 > ... > x{N-1} > y0 > y1 > ... > y{N}
V_CICO = flatten(dict_vars['X'][1:-1]) + flatten(dict_vars['Y'])
# ORDERING 3: original reversed (bad)
elif (P.n_cols == 1) and ordering == 3:
# x1 < x2 < ... < x{N-1} < y0 < y1 < ... < y{N}
V_CICO = flatten(dict_vars['X'][1:-1]) + flatten(dict_vars['Y'])
V_CICO.reverse()
else:
print(f"Ordering ({ordering}) not implemented for l={P.n_cols}")
exit(-1)
# Reinterpret polynomials wrt new variable ordering
poly_ring = PolynomialRing(base_ring=P.F, names=V_CICO, order='degrevlex')
F_CICO = [poly_ring(f) for f in F_CICO]
#V_CICO = [poly_ring(v) for v in V_CICO] # never used
dict_vars['X'][0] = [0]*P.n_cols
dict_vars['X'][-1] = [0]*P.n_cols
if debug:
print("-"*100)
print("Number of equations: ", len(F_CICO))
print("Number of variables: ", len(V_CICO))
print("-"*100)
print(poly_ring)
return F_CICO, dict_vars
#=============================================================================================
def model_P_CICO(P, n_rounds, final_ll=True, ordering=1, debug=False):
"""
Model P from the Anemoi paper. Without or without final linear layer.
CICO variables (first l inputs, first l outputs) inserted directly.
Inputs:
P Anemoi permutation
n_rounds Number of rounds
ordering 1: y0 > sr > ... > s1 (custom, good)
2: y0 > s1 > ... > sr (original, bad)
3: sr > ... > s1 > y0 (custom, bad)
debug Debug flag for intermediate output
"""
P.n_rounds = n_rounds
# If no ordering is specified, use custom (good) one.
if ordering is None:
ordering = 1
if debug:
print("\n" + "="*100)
print(P)
#------------------------------------------------------------------------------------------
# Variables
#------------------------------------------------------------------------------------------
# 2l input variables, l additional variables per round (one for each flystel)
num_vars = 2*P.n_cols + P.n_cols*P.n_rounds
all_vars = []
for r in range(0, P.n_rounds+1):
if r == 0:
all_vars += [f"X{r:02d}{i:02d}" for i in range(0, P.n_cols)]
all_vars += [f"Y{r:02d}{i:02d}" for i in range(0, P.n_cols)]
else:
all_vars += [f"S{r:02d}{i:02d}" for i in range(0, P.n_cols)]
assert(len(all_vars) == num_vars)
# Polynomial ring
poly_ring = PolynomialRing(base_ring=P.F, names=all_vars, order='degrevlex')
if debug:
print("-"*100)
print(poly_ring)
# Dictonary to use for equations
dict_vars = {"X" : {}, "Y" : {}, "S" : {}}
for r in range(0, P.n_rounds+1):
if r == 0:
dict_vars["X"][r] = [poly_ring(f"X{r:02d}{i:02d}") for i in range(0, P.n_cols)]
dict_vars["Y"][r] = [poly_ring(f"Y{r:02d}{i:02d}") for i in range(0, P.n_cols)]
else:
dict_vars["S"][r] = [poly_ring(f"S{r:02d}{i:02d}") for i in range(0, P.n_cols)]
if debug:
for var_name in dict_vars:
print(var_name, dict_vars[var_name])
#------------------------------------------------------------------------------------------
# Equations
#------------------------------------------------------------------------------------------
# Equations that all the intermediate values must satisfy. Implicitely relies on open Flystel.
all_eqs = []
# 2l equations per round
num_eqs = P.n_cols*P.n_rounds
# Helper functions
E = lambda x : (x)**P.alpha # alpha fixed to what is defined by permutation P
Q = lambda x, c : P.beta * (x)**P.QUAD + c # either squared or cubed, depending on characteristic (or custom)
Qd = lambda x : Q(x, P.delta)
Qg = lambda x : Q(x, P.F.zero()) # gamma is zero
x, y = dict_vars["X"][0], dict_vars["Y"][0]
for r in range(1, P.n_rounds+1):
# Inputs to open flystel (= round inputs + round constand addition + linear layer)
x = [x[i] + P.C[r-1][i] for i in range(0, P.n_cols)]
y = [y[i] + P.D[r-1][i] for i in range(0, P.n_cols)]
x, y = P.linear_layer(x, y)
# Each state gets modelled via state variable si
s = dict_vars["S"][r]
all_eqs += [E(s[i]) - x[i] + Qg(y[i]) for i in range(0, P.n_cols)]
# Outputs of open flystel
v = [y[i] - s[i] for i in range(0, P.n_cols)]
x = [(x[i] - Qg(y[i])) + Qd(v[i]) for i in range(0, P.n_cols)]
y = v
assert(len(all_eqs) == num_eqs)
if debug:
print("-"*100)
print("Number of equations: ", num_eqs)
print("Number of variables: ", num_vars)
print("-"*100)
#for eqn in all_eqs:
# print(f"deg = {eqn.degree()}, ", eqn)
print(f"Degrees: {[f.degree() for f in all_eqs]}")
#------------------------------------------------------------------------------------------
# CICO constraints according to anemoi paper (l inputs x, l outputs x)
#------------------------------------------------------------------------------------------
# constained input
cico_vars = {cico_var : P.F.zero() for cico_var in dict_vars["X"][0]}
# constrained output
if final_ll:
x, y = P.linear_layer(x, y)
all_eqs += x
F_CICO = [f.specialization(cico_vars) for f in all_eqs]
#------------------------------------------------------------------------------------------
# Fast variable ordering
#------------------------------------------------------------------------------------------
# REMARK: ONLY CHECKED FOR l=1
#print(f"Apply ordering {ordering}")
# ORDERING 1: custom (good)
if (P.n_cols == 1) and ordering == 1:
# y0 > sr > ... > s1
V_CICO = flatten([dict_vars['S'][r] for r in range(1,P.n_rounds + 1)])
V_CICO = dict_vars['Y'][0] + V_CICO[::-1]
# ORDERING 2: original (bad)
elif (P.n_cols == 1) and ordering == 2:
# y0 > s1 > ... > sr
V_CICO = dict_vars['Y'][0] + flatten([dict_vars['S'][r] for r in range(1,P.n_rounds + 1)])
# ORDERING 3: custom (bad)
elif (P.n_cols == 1) and ordering == 3:
# sr > ... > s1 > y0
V_CICO = flatten([dict_vars['S'][r] for r in range(1,P.n_rounds + 1)])
V_CICO = V_CICO[::-1] + dict_vars['Y'][0]
else:
print(f"Ordering ({ordering}) not implemented for l={P.n_cols}")
exit(-1)
# Reinterpret polynomials wrt new variable ordering
poly_ring = PolynomialRing(base_ring=P.F, names=V_CICO, order='degrevlex')
F_CICO = [poly_ring(f) for f in F_CICO]
#V_CICO = [poly_ring(v) for v in V_CICO] # never used
dict_vars['X'][0] = [0]*P.n_cols
if debug:
print("-"*100)
print("Number of equations: ", len(F_CICO))
print("Number of variables: ", len(V_CICO))
print("-"*100)
print(poly_ring)
return F_CICO, dict_vars