-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathevaluation.py
109 lines (93 loc) · 3.86 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
from ray.rllib.policy import Policy
from ray.rllib.models import ModelCatalog
import numpy as np
import torch
import os
import tqdm
from config import Config
import time
import json
from pathlib import Path
from envs.env_hier import HighLevelEnv
from models.ac_models_hier import CommanderGru
ModelCatalog.register_custom_model("commander_model",CommanderGru)
N_OPP_HL = 2 #sensing
OBS_DIM = 14+10*N_OPP_HL
MODEL_NAME = "Commander_3_vs_3" #name of commander model in folder 'results'
N_EVALS = 1000
def cc_obs(obs):
return {
"obs_1_own": obs,
"obs_2": np.zeros(OBS_DIM, dtype=np.float32),
"obs_3": np.zeros(OBS_DIM, dtype=np.float32),
"act_1_own": np.zeros(1),
"act_2": np.zeros(1),
"act_3": np.zeros(1),
}
def evaluate(args, env, algo, epoch, eval_stats, eval_log):
state, _ = env.reset()
reward = 0
done = False
step = 0
info = {}
while not done:
actions = {}
states = [torch.zeros(200), torch.zeros(200)]
if args.eval_hl:
for ag_id, ag_s in state.items():
a = algo.compute_single_action(obs=cc_obs(ag_s), state=states, explore=False)
actions[ag_id] = a[0]
states[0] = a[1][0]
states[1] = a[1][1]
else:
# if no commander involved, assign closest opponent for each agent.
for n in range(1,args.num_agents+1):
actions[n] = 1
state, rew, hist, trunc, info = env.step(actions)
for r in rew.values(): reward += r
done = hist["__all__"] or trunc["__all__"]
step += 1
for k, v in info.items(): eval_stats[k] += v
eval_stats["total_n_actions"]+=1
if epoch %100 ==0:
env.plot(Path(eval_log, f"Ep_{epoch}_Step_{step}_Rew_{round(reward,2)}.png"))
return
def postprocess_eval(ev, eval_file):
#calculate fractions
win = (ev["agents_win"] / N_EVALS) * 100
lose = (ev["opps_win"] / N_EVALS) * 100
draw = (ev["draw"] / N_EVALS) * 100
fight = (ev["agent_fight"] / ev["agent_steps"]) *100
esc = (ev["agent_escape"] / ev["agent_steps"]) *100
fight_opp = (ev["opp_fight"] / ev["opp_steps"]) *100
esc_opp = (ev["opp_escape"] / ev["opp_steps"]) *100
opp1 = (ev["opp1"] / ev["agent_fight"]) *100
opp2 = (ev["opp2"] / ev["agent_fight"]) *100
opp3 = (ev["opp3"] / ev["agent_fight"]) *100
evals = {"win":win, "lose":lose, "draw":draw, "fight":fight, "esc":esc, "fight_opp":fight_opp, "esc_opp":esc_opp, "opp1":opp1, "opp2":opp2, "opp3":opp3}
for k,v in evals.items():
print(f"{k}: {round(v,2)}")
with open(eval_file, 'w') as file:
json.dump(evals, file, indent=3)
if __name__ == "__main__":
t1 = time.time()
args = Config(2).get_arguments
log_base = os.path.join(os.getcwd(),'results')
check = os.path.join(log_base, MODEL_NAME, 'checkpoint')
config = "Commander_" if args.eval_hl else "Low-Level_"
config = config + f"{args.num_agents}-vs-{args.num_opps}"
eval_log = os.path.join(log_base, "EVAL_"+config)
eval_file = os.path.join(eval_log, f"Metrics_{config}.json")
if not os.path.exists(eval_log): os.makedirs(eval_log)
env = HighLevelEnv(args.env_config)
# if evaluating purely low-level policies, we don't need commander.
policy = Policy.from_checkpoint(check, ["commander_policy"])["commander_policy"] if args.eval_hl else None
eval_stats = {"agents_win": 0, "opps_win": 0, "draw": 0, "agent_fight": 0, "agent_escape":0, "opp_fight":0, "opp_escape":0, \
"agent_steps":0, "opp_steps":0, "total_n_actions":0 ,\
"opp1":0, "opp2":0, "opp3":0}
iters = tqdm.trange(0, N_EVALS, leave=True)
for n in iters:
evaluate(args, env, policy, n, eval_stats, eval_log)
print("------RESULTS:")
postprocess_eval(eval_stats, eval_file)
print(f"------TIME: {round(time.time()-t1, 3)} sec.")