-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConfusion_matrix.R
140 lines (123 loc) · 8.63 KB
/
Confusion_matrix.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# code for plotting confusion matrices
conf_mat <- function(data.long, col1, col2 = col1, axis.col = NULL, axis1 = NULL, axis2 = NULL, key = TRUE, num1 = "full", num2 = "sample", spec.abb = NULL, abb.end = NULL, axes.same = TRUE, xlab = paste(col1), ylab = paste(col2), sp.list = "present", sp.exc = NULL, subset.col = NULL, subset.lev = NULL, palette = "matlab.like", grid = FALSE, grid.sp = 5, grid.col = "grey40") {
# dataset in long form
# col 1 / 2 - columns from the dataset
# axis 1 / 2 - if the columns are the same, what subset of the data are being used?
# num 1 / 2 - should numbers be "full" for all samples, or just for that "sample"
# spec.abb - the link between full species names and abbreviations, colnames "Species" "Abbreviations". If NULL, it assumes that the names in the table are the full names
# abb.end - any abbreviations that should be moved to the end of the sort
# axes.same - should the x and y axes have the same species on them? x will always have the full list, y can be shorter
# sp.list - should only the species "present" in the subset of the data be used, or should the "full" list be used
# sp.exc - species to be excluded from the analysis
# subset.col / subset.lev - the column and level by which to subset the data
require(caret) # for the confusion matrix
require(colorRamps) # colours
require(stringr)
par.def <- par("fig", "mar", "mai")
on.exit(par(par.def))
if (key) {
par(fig = c(0, 0.9, 0, 1))
}
par(mar = c(16, 16, 2.5, 2))
# generate a species abbreviations table if it doesn't already exist
if (is.null(spec.abb)) {
spec.abb <- data.frame(Species = sort(as.character(unique(data.long[, col1]))), Abbreviations = sort(as.character(unique(data.long[, col1]))), stringsAsFactors = FALSE)
}
# create a dataframe to work on
# if there are some species to exclude, e.g. "lost"
if (!is.null(sp.exc)) {
tmp.exc <- c(which(data.long[, col1] == sp.exc), which(data.long[, col2] == sp.exc))
data <- data.long[-tmp.exc, ]
} else {
data <- data.long
}
# if we should only use a subset of the data
if (!is.null(subset.col)) {
if (is.null(subset.lev))
stop("subset level is needed when subset.col is used")
data <- data[data[,subset.col] == subset.lev, ]
}
# create the smaller dataframe for the analysis
if (is.null(axis.col)) {
data <- data.frame(ax1 = as.character(data[, col1]), ax2 = as.character(data[, col2]), stringsAsFactors = FALSE)
} else {
data <- data.frame(ax1 = as.character(data[data[,names(data) == axis.col] == axis1, names(data) == col1]), ax2 = as.character(data[data[,names(data) == axis.col] == axis2, names(data) == col2]), stringsAsFactors = FALSE)
}
# which subset of the species are needed for this analysis
if (sp.list == "present") {
spec.abb <- spec.abb[spec.abb$Abbreviation %in% unique(c(data$ax1, data$ax2)),]
# reorder
spec.abb <- spec.abb[c(which(!(spec.abb$Abbreviation %in% abb.end)), which(spec.abb$Abbreviation %in% abb.end)), ]
} else if (sp.list == "full") {
spec.abb <- spec.abb[c(which(!(spec.abb$Abbreviation %in% abb.end)), which(spec.abb$Abbreviation %in% abb.end)), ]
}
# species for axis 1 / axis 2
if (axes.same) {
spec.ax1 <- spec.ax2 <- spec.abb
} else {
# reorder so that the species in the shorter axis come first
spec.abb <- spec.abb[c(which(spec.abb$Abbreviation %in% unique(data[, 2])), which(!(spec.abb$Abbreviation %in% unique(data[, 2])))), ]
spec.ax1 <- spec.abb
spec.ax2 <- spec.abb[spec.abb$Abbreviation %in% unique(data[, 2]),]
}
# the confusion matrix
conf <- confusionMatrix(factor(data$ax2, levels = spec.abb$Abbreviation), factor(data$ax1, levels = spec.abb$Abbreviation))
dim1 <- nrow(spec.ax1)
dim2 <- nrow(spec.ax2)
xlim1 <- -(1+1/(dim1 - 1))/dim1/2
xlim2 <- (dim1*((1+1/(dim1 - 1)))/dim1) - (1+1/(dim1 - 1))/dim1/2
ylim1 <- (dim2*((1+1/(dim1 - 1)))/dim1) - (1+1/(dim1 - 1))/dim1/2
ylim2 <- -(1+1/(dim1 - 1))/dim1/2
plot(1, type = "n", xlim = c(xlim1, xlim2), ylim = c(ylim1, ylim2), xlab = "", ylab = "", axes = FALSE, bty = "o", xaxs = "i", yaxs = "i")
rect(xlim1, ylim2, xlim2, ylim1, col = "grey70")
image(t(conf$table / rowSums(conf$table)), col =c("grey70", do.call(palette, list(100000))), axes = FALSE, add = TRUE)
# add labels
if (xlab == paste(col1) & !is.null(axis.col)) {
xlab <- paste(axis1)
}
if (ylab == paste(col2) & !is.null(axis.col)) {
ylab <- paste(axis2)
}
title(xlab = xlab, ylab = ylab, line = 13, cex.axis = 1.2, font.lab = 2)
# x axis names
xaxis.names <- spec.ax1$Species
axis(1, seq(0,1, length.out = length(xaxis.names))[intersect(which(str_count(xaxis.names, " ") != 2),grep("^[A-Z]", xaxis.names))], xaxis.names[intersect(which(str_count(xaxis.names, " ") != 2),grep("^[A-Z]", xaxis.names))], las = 2, font = 3, cex.axis = 1.05)
axis(1, seq(0,1, length.out = length(xaxis.names))[-grep("^[A-Z]", xaxis.names)], xaxis.names[-grep("^[A-Z]", xaxis.names)], las = 2, cex.axis = 1.05)
if (any(str_count(xaxis.names, " ") == 2))
axis(1, seq(0,1, length.out = length(xaxis.names))[intersect(which(str_count(xaxis.names, " ") == 2), grep("^[A-Z]", xaxis.names))], labels = parse(text = paste(paste("italic('", gsub("^([^ ]* [^ ]*) (.*$)", "\\1", xaxis.names[intersect(which(str_count(xaxis.names, " ") == 2), grep("^[A-Z]", xaxis.names))]), "')", sep = ""), gsub("^([^ ]* [^ ]*) (.*$)", "\\2", xaxis.names[intersect(which(str_count(xaxis.names, " ") == 2), grep("^[A-Z]", xaxis.names))]), sep = "~")), las = 2, cex.axis = 1.05)
# number of specimens in Individual ID
ax.3 <- table(data$ax1)[match(spec.ax1$Abbreviation, names(table(data$ax1)))]
ax.3 <- ifelse(is.na(ax.3), 0, ax.3)
axis(3, seq(0,1, length.out = length(xaxis.names)) - 0.002, ax.3, cex.axis = 0.8, las = 2, tick = FALSE, mgp = c(3, 0.5, 0))
# y axis names
yaxis.names <- spec.ax2$Species
axis(2, seq(0,((dim2 - 1)*((1+1/(dim1 - 1)))/dim1), length.out = dim2)[intersect(which(str_count(xaxis.names, " ") != 2),grep("^[A-Z]", xaxis.names))], xaxis.names[intersect(which(str_count(xaxis.names, " ") != 2),grep("^[A-Z]", xaxis.names))], las = 2, font = 3, cex.axis = 1.05)
axis(2, seq(0,((dim2 - 1)*((1+1/(dim1 - 1)))/dim1), length.out = dim2)[-grep("^[A-Z]", yaxis.names)], yaxis.names[-grep("^[A-Z]", yaxis.names)], las = 1, cex.axis = 1.05)
if (any(str_count(yaxis.names, " ") == 2))
axis(2, seq(0,((dim2 - 1)*((1+1/(dim1 - 1)))/dim1), length.out = dim2)[intersect(which(str_count(yaxis.names, " ") == 2), grep("^[A-Z]", yaxis.names))], labels = parse(text = paste(paste("italic('", gsub("^([^ ]* [^ ]*) (.*$)", "\\1", yaxis.names[intersect(which(str_count(yaxis.names, " ") == 2), grep("^[A-Z]", yaxis.names))]), "')", sep = ""), gsub("^([^ ]* [^ ]*) (.*$)", "\\2", yaxis.names[intersect(which(str_count(yaxis.names, " ") == 2), grep("^[A-Z]", yaxis.names))]), sep = "~")), las = 2, cex.axis = 1.05)
# number of specimens in Definitive ID or count of specimens in axis 2
if (length(data.long$Person[data.long$Person == data.long$Person[1]]) == nrow(data)) {
ax.4 <- table(data$ax2)[match(spec.ax2$Abbreviation, names(table(data$ax2)))]
ax.4 <- ifelse(is.na(ax.4), 0, ax.4)
axis(4, seq(0,1, length.out = length(yaxis.names)) - 0.002, ax.4, cex.axis = 0.8, las = 2, tick = FALSE, mgp = c(3, 0.5, 0))
} else {
axis(4, seq(0,((dim2 - 1)*((1+1/(dim1 - 1)))/dim1), length.out = dim2) - 0.002, table(factor(data.long[, col2], levels = spec.ax2$Abbreviation))/length(unique(data.long$Person)), cex.axis = 0.8, las = 1, tick = FALSE, mgp = c(3, 0.5, 0))
}
# make sure the box goes all the way round
rect(xlim1, ylim2, xlim2, ylim1, col = rgb(0, 0, 0, alpha = 0))
# add grid
if (grid) {
abline(v = seq(0,1, length.out = length(xaxis.names))[1:(length(xaxis.names)/grid.sp)]*grid.sp + (1/(length(xaxis.names) - 1))*(grid.sp-0.5), col = grid.col)
abline(h = seq(0,((dim2 - 1)*((1+1/(dim1 - 1)))/dim1), length.out = dim2)[1:(length(yaxis.names)/grid.sp)]*grid.sp + ((dim2 - 1)*((1+1/(dim1 - 1)))/dim1)/(dim2 - 1)*(grid.sp-0.5), col = grid.col)
}
if (key) {
# add key
par(fig = c(0.9, 1, 0.35, 1), new = TRUE)
par(mai = c(1, 0.4, 0.8, 0.5))
names.key <- rep("", 101)
names.key[seq(1, 101, by = 20)] <- seq(0.0, 1.0, by = 0.2)
key <- rep(1, 101)
barplot(key, main = "\nFraction of\nSpecimens", horiz = TRUE, space = 0, border = NA, col = c("grey70", do.call(palette, list(100))), fg = "white", cex.main = 1.1, font.main = 1, xaxt = "n", yaxt = "n")
axis(4, at = 1:101, names.key, las = 1, mgp = c(0, 1, 0), xaxt = "n", cex.axis = 1, tick = FALSE)
}
}