-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
172 lines (144 loc) · 4.91 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import argparse
import os
import socket
import sys
import time
import uuid
from argparse import ArgumentParser
from configparser import ConfigParser
import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.loggers import NeptuneLogger
from data import QADataModule, SaliencyDataModule
from qa_model import QAModel
from saliency_model import SaliencyModel
from save_saliency import save_saliency
from utils import get_logger
model_dict = {
'qa': (QAModel, QADataModule),
'saliency': (SaliencyModel, SaliencyDataModule)
}
monitor_dict = {
'qa': 'valid_acc_epoch',
'saliency': {
'cls': ['valid_qa_acc_epoch', 'valid_f1_epoch', 'valid_acc_epoch'],
}
}
neptune_api_key = os.environ['NEPTUNE_API_TOKEN']
neptune_project_name = os.environ['NEPTUNE_PROJ_NAME']
basic_logger = get_logger(__name__)
def parse_args():
conf_parser = ArgumentParser()
conf_parser.add_argument('--config')
args, _ = conf_parser.parse_known_args()
# check if config path is valid
if not os.path.isfile(args.config):
print('Config path invalid')
sys.exit(0)
config = ConfigParser()
config.read([args.config])
defaults = dict(config.items('DEFAULT'))
for k, v in defaults.items():
if v == 'True':
defaults[k] = True
elif v == 'False':
defaults[k] = False
elif v == 'None':
defaults[k] = None
parser = argparse.ArgumentParser(parents=[conf_parser], add_help=False)
parser = pl.Trainer.add_argparse_args(parser)
model, dm = model_dict[defaults['task']]
parser = model.add_model_specific_args(parser)
parser = dm.add_data_specific_args(parser)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--freeze_epochs', type=int, default=-1)
parser.add_argument('--name', type=str, default='test')
parser.add_argument('--tag_attrs', type=str, default='task,dataset,arch,graph_encoder')
parser.add_argument('--ckpt_path', type=str, default=None)
parser.add_argument('--debug', action='store_true')
parser.add_argument('--save_checkpoint', action='store_true')
parser.set_defaults(**defaults)
return parser.parse_args()
def get_neptune_logger(args):
tags = []
args_dict = vars(args)
args_dict['hostname'] = socket.gethostname()
for tag_attr in args.tag_attrs.split(','):
if args_dict.get(tag_attr, None) is not None:
tags.append(args_dict[tag_attr])
neptune_logger = NeptuneLogger(
api_key=neptune_api_key,
project_name=neptune_project_name,
experiment_name=args.name,
params=args_dict,
tags=tags,
offline_mode=args.debug,
)
# new version of neptune logger will not create experiment in init
neptune_logger.experiment
return neptune_logger
def get_callbacks(args):
if args.task == 'qa':
monitor = monitor_dict[args.task]
mode = 'max'
elif args.task == 'saliency':
monitor = monitor_dict[args.task][args.target_type]
if args.target_type == 'cls':
if args.pruned_qa:
monitor = monitor[0]
elif args.sal_num_classes == 2:
monitor = monitor[1]
elif args.sal_num_classes > 2:
monitor = monitor[2]
mode = 'max' if args.target_type == 'cls' else 'min'
checkpoint_callback = ModelCheckpoint(
monitor=monitor,
dirpath=os.path.join(args.root_dir, 'checkpoints'),
save_top_k=1,
mode=mode,
verbose=True,
save_last=False,
)
early_stop_callback = EarlyStopping(
monitor=monitor,
min_delta=0.00,
patience=5,
verbose=False,
mode=mode
)
return [checkpoint_callback, early_stop_callback]
def build(args):
"""
build pl modules
"""
pl.seed_everything(args.seed)
basic_logger.info('Loading data...')
model, dm = model_dict[args.task]
dm = dm(args)
dm.setup()
basic_logger.info('Loading model...')
model = model(args)
return dm, model
def train(dm, model, args):
neptune_logger = get_neptune_logger(args)
args.root_dir = f'./save/{neptune_logger.experiment_id}'
basic_logger.info('Building trainer...')
trainer = pl.Trainer.from_argparse_args(
args,
logger=neptune_logger,
callbacks=get_callbacks(args),
precision=16 if args.fp16 else 32,
num_sanity_val_steps=0
)
trainer.fit(model, dm)
basic_logger.info('Testing the best model...')
trainer.test(ckpt_path='best')
if __name__ == '__main__':
args = parse_args()
basic_logger.info("initializing pl modules")
args.name = f'{args.task}_{args.arch}_{time.strftime("%d_%m_%Y")}_{time.strftime("%H:%M:%S")}_{str(uuid.uuid4())[:8]}'
dm, model = build(args)
if args.save_saliency:
save_saliency(dm, model, args)
else:
train(dm, model, args)