forked from aseetharam/common_scripts
-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathgff2fasta.pl
executable file
·215 lines (190 loc) · 7.22 KB
/
gff2fasta.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#!/usr/bin/perl
#taken from https://www.biostars.org/p/46281/ and modified as needed 10/15/15
use strict;
use warnings;
use Bio::Seq;
use Bio::SeqIO;
use Bio::DB::Fasta;
#add a help message here
#my $num_args=$#ARGV + 1;
#if ($num_args != 4) {
# print "\nUsage: gff2perl Genome.fasta Annotation.gff OutputPrefix \n\n";
# exit;
#}
$| = 1; # Flush output
my $outfile_cds = Bio::SeqIO->new( -format => 'fasta', -file => ">$ARGV[2].cds.fasta" );
my $outfile_pep = Bio::SeqIO->new( -format => 'fasta', -file => ">$ARGV[2].pep.fasta" );
my $outfile_cdna = Bio::SeqIO->new( -format => 'fasta', -file => ">$ARGV[2].cdna.fasta" );
my $outfile_gene = Bio::SeqIO->new( -format => 'fasta', -file => ">$ARGV[2].gene.fasta" );
my $outfile_upstream3000 = Bio::SeqIO->new( -format => 'fasta', -file => ">$ARGV[2].upstream3000.fasta" );
my $outfile_exon = Bio::SeqIO->new( -format => 'fasta', -file => ">$ARGV[2].exon.fasta");
###### Output type description ######
# cds - translated sequence (starting with ATG and ending with a stop codon included)
# cdna - transcribed sequence (devoid of introns, but containing untranslated exons)
# protein - cds translated (includes a * as the stop codon)
# gene - the entire gene sequence (including UTRs and introns)
# upstream3000 - the 3000 upstream region of the gene (likely including the promoter)
### First, index the genome
my $file_fasta = $ARGV[0];
my $db = Bio::DB::Fasta->new($file_fasta);
print ("Genome fasta parsed\n");
### Second, parse the GFF3
my %CDS;
my %CDNA;
my %EXON;
my $mRNA_name;
my $frame;
open GFF, "<$ARGV[1]" or die $!;
while ( my $line = <GFF> ) {
chomp $line;
my @array = split( "\t", $line );
my $type = $array[2];
if ($type eq 'gene' || $type eq 'mt_gene' ) {
my @attrs = split( ";", $array[8] );
$attrs[0] =~ s/ID=//;
my $gene_name = $attrs[0];
my $gene_start = $array[3];
my $gene_end = $array[4];
my $gene_seq = $db->seq( $array[0], $gene_start, $gene_end );
my $output_gene = Bio::Seq->new(
-seq => $gene_seq,
-id => $gene_name,
-display_id => $gene_name,
-alphabet => 'dna',
);
# The upstream 3000
my $upstream_start;
my $upstream_end;
if($array[6] eq '+') {
$upstream_start=$gene_start-3000;
$upstream_end=$gene_start-1;
}
elsif ($array[6] eq '-') {
$upstream_start=$gene_end+1;
$upstream_end=$gene_end+3000;
}
my $upstream_seq = $db->seq( $array[0], $upstream_start, $upstream_end );
my $output_upstream3000 = Bio::Seq->new(
-seq => $upstream_seq,
-id => $gene_name."_upstream3000",
-display_id => $gene_name."_upstream3000",
-alphabet => 'dna',
);
# Reverse Complement if the frame is minus
if($array[6] eq '+') {
}
elsif ($array[6] eq '-') {
$output_gene = $output_gene->revcom();
$output_upstream3000 = $output_upstream3000->revcom();
}
else {
die "Unknown frame! At line $. of the GFF\n";
}
#added an if statement for all outputs requiring there to be sequence information before writing to file otherwise the fasta file contains lots of empty fasta headers
if (length($gene_seq) != 0) {
$outfile_gene->write_seq($output_gene);
}
if (length($upstream_seq) != 0) {
$outfile_upstream3000->write_seq($output_upstream3000);
}
}
#CDS
if ( ( $type eq 'mRNA' || $type eq 'transcript' ) and ( $. > 2 ) ) {
# CDS: Collect CDSs and extract sequence of the previous mRNA
my $mergedCDS_seq;
# WARNING we must sort by $cds_coord[1]
foreach my $key (sort {$a <=> $b} keys %CDS) { # Ascending numeric sort of the starting coordinate
my $coord = $CDS{$key};
my @cds_coord = split( " ", $coord );
my $cds_seq = $db->seq( $cds_coord[0], $cds_coord[1], $cds_coord[2] );
$mergedCDS_seq .= $cds_seq;
}
my $output_cds = Bio::Seq->new(
-seq => $mergedCDS_seq,
-id => $mRNA_name,
-display_id => $mRNA_name,
-alphabet => 'dna',
);
if ($frame eq '-') {
$output_cds = $output_cds->revcom();
}
#translate CDS to peptide for protein sequence
my $output_pep = $output_cds->translate();
#write to file
if (length($mergedCDS_seq) != 0) {
$outfile_cds->write_seq($output_cds);
}
if (length($mergedCDS_seq) != 0) {
$outfile_pep->write_seq($output_pep);
}
#exons
#should be able to add exon output here since exons will be useful in gene models for other organisms can be added in the EVM program
my $mergedEXON_seq;
foreach my $key (sort {$a <=> $b} keys %EXON) { # Ascending numeric sort of the starting coordinatg
my $coord = $EXON{$key};
my @exon_coord = split( " ", $coord );
my $exon_seq = $db->seq( $exon_coord[0], $exon_coord[1], $exon_coord[2] );
$mergedEXON_seq .= $exon_seq;
}
my $output_exon = Bio::Seq->new(
-seq => $mergedEXON_seq,
-id => $mRNA_name,
-display_id => $mRNA_name,
-alphabet => 'dna',
);
if ($frame eq '-') {
$output_exon = $output_exon->revcom();
}
#write to file
if (length($mergedEXON_seq) != 0) {
$outfile_exon->write_seq($output_exon);
}
# CDNA: Collect UTRs and CDSs and extract sequence of the previous mRNA
my $mergedCDNA_seq;
foreach my $key (sort {$a <=> $b} keys %CDNA) { # Ascending numeric sort of the starting coordinate
my $coord = $CDNA{$key};
my @cds_coord = split( " ", $coord );
my $cds_seq = $db->seq( $cds_coord[0], $cds_coord[1], $cds_coord[2] );
$mergedCDNA_seq .= $cds_seq;
}
my $output_cdna = Bio::Seq->new(
-seq => $mergedCDNA_seq,
-id => $mRNA_name,
-display_id => $mRNA_name,
-alphabet => 'dna',
);
if ($frame eq '-') {
$output_cdna = $output_cdna->revcom();
}
if (length($mergedCDNA_seq) != 0) {
$outfile_cdna->write_seq($output_cdna);
}
# Now initialize the next mRNA
my @attrs = split( ";", $array[8] );
$attrs[0] =~ s/ID=//;
$mRNA_name = $attrs[0];
$frame=$array[6];
%CDS = (); %CDNA = (); # Empty the chunk arrays
%EXON = (); %EXON = (); #Empty the EXON chunk arrays
}
elsif ( $type eq 'mRNA' ) { # First mRNA
my @attrs = split( ";", $array[8] );
$attrs[0] =~ s/ID=//;
$mRNA_name = $attrs[0];
$frame=$array[6];
}
elsif ( $type eq 'CDS' ) {
my $cds_coord = $array[0] . " " . $array[3] . " " . $array[4];
$CDS{$array[3]}=$cds_coord;
$CDNA{$array[3]}=$cds_coord;
}
elsif ($type eq 'UTR' ) {
my $utr_coord = $array[0] . " " . $array[3] . " " . $array[4];
$CDNA{$array[3]}=$utr_coord;
}
elsif ($type eq 'exon' ) {
my $exon_coord = $array[0] . " " . $array[3] . " " . $array[4];
$EXON{$array[3]}=$exon_coord;
}
}
close GFF;