-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdashboard.py
354 lines (313 loc) · 13.7 KB
/
dashboard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import pandas as pd
import numpy as np
import base64
import io
import json
import dash
from dash import Dash, html, dcc, Input, Output, State
from dash.exceptions import PreventUpdate
from components.query import get_data, get_species_options, get_images
from components.graphs import make_hist_plot, make_map, make_pie_plot
from components.divs import get_main_div, get_error_div, get_hist_div, get_map_div, get_img_div
# Fixed style
PRINT_STYLE = {'textAlign': 'center', 'color': 'MidnightBlue', 'margin-bottom' : 10}
# Initialize app/dashboard and set layout
app = Dash(__name__, suppress_callback_exceptions=True)
server = app.server
app.layout = html.Div([
dcc.Upload(html.Button('Upload Data',
style = {'color': 'MidnightBlue',
'background-color': 'BlanchedAlmond',
'border-color': 'MidnightBlue',
'font-size': '16px'}),
id = 'upload-data',
multiple = False
),
# Set up memory store with loading indicator, will revert on page refresh
dcc.Loading(id = 'memory-loading',
type = "circle",
color = 'DarkMagenta',
children = dcc.Store(id = 'memory')),
html.Hr(),
html.Div(children = [html.H3('Upload data (CSV or XLS) to see distribution statistics.',
style = PRINT_STYLE),
html.Br(),
html.P(["For further file requirements, please see the ",
html.A("documentation",
href="https://github.com/Imageomics/dashboard-prototype#how-it-works",
target='_blank'),
"."],
style = PRINT_STYLE)],
id = 'output-data-upload')
])
# Data read in and save to memory
@app.callback(
Output('memory', 'data', allow_duplicate=True),
Input('upload-data', 'contents'),
State('upload-data', 'filename'),
prevent_initial_call = True
)
def parse_contents(contents, filename):
'''
Reads uploaded data, checks that it meets requirements, and processes it. Returns processed data and available options in JSON.
'''
if contents is None:
raise PreventUpdate
content_type, content_string = contents.split(',')
decoded = base64.b64decode(content_string)
try:
if 'csv' in filename:
df = pd.read_csv(io.StringIO(decoded.decode('utf-8')))
elif 'xls' in filename:
df = pd.read_excel(io.BytesIO(decoded))
else:
return json.dumps({'error': {'type': 'wrong file type'}})
except UnicodeDecodeError as e:
print(e)
return json.dumps({'error': {'unicode': str(e)}})
except Exception as e:
print(e)
return json.dumps({'error': {'other': str(e)}})
# Check for required columns
# If no lat/lon, disable Map View button
# If no image urls, disable sample image options
mapping = True
img_urls = True
features = ['Species', 'Subspecies', 'View', 'Sex', 'Hybrid_stat', 'Lat', 'Lon', 'File_url']
included_features = []
df.columns = df.columns.str.capitalize()
for feature in features:
if feature not in list(df.columns):
if feature == 'Lat' or feature == 'Lon':
if feature == 'Lon':
if 'Long' not in list(df.columns):
mapping = False
else:
df = df.rename(columns = {"Long": "Lon"})
included_features.append('Lon')
else:
mapping = False
elif feature == 'File_url':
img_urls = False
else:
return json.dumps({'error': {'feature': feature}})
else:
included_features.append(feature)
# Check for lat/lon bounds & type if columns exist
if mapping:
try:
# Check lat and lon within appropriate ranges (lat: [-90, 90], lon: [-180, 180])
valid_lat = df['Lat'].astype(float).between(-90, 90)
df.loc[~valid_lat, 'Lat'] = np.nan
valid_lon = df['Lon'].astype(float).between(-180, 180)
df.loc[~valid_lon, 'Lon'] = np.nan
except ValueError as e:
print(e)
return json.dumps({'error': {'mapping': str(e)}})
# get dataset-determined static data:
# the dataframe and categorical features - processed for map view if mapping is True
# all possible species, subspecies -- must run first to avoid adding "unknown" to lists
# will likely include categorical options in later instance (sooner)
all_species = get_species_options(df)
processed_df, cat_list = get_data(df, mapping, included_features)
# save data to dictionary to save as json
data = {
'processed_df': processed_df.to_json(date_format = 'iso', orient = 'split'),
'all_species': all_species,
'mapping': mapping,
'images': img_urls
}
return json.dumps(data)
# Callback to update processed data if new data uploaded
@app.callback(
Output('memory', 'data'),
Input('upload-data', 'contents'),
State('upload-data', 'filename'),
prevent_initial_call = True
)
def update_output(contents, filename):
if contents is not None:
return parse_contents(contents, filename)
# Callback to get main div (histogram, pie chart, and image example options)
@app.callback(
Output('output-data-upload', 'children'),
Input('memory', 'data'),
prevent_initial_call = True
)
def get_visuals(jsonified_data):
'''
Fetches the main div (histogram, pie chart, and image example options) based on the processed and saved data.
Returns error div if error occurs in upload or essential features are missing.
'''
# load saved data
data = json.loads(jsonified_data)
if 'error' in data:
return get_error_div(data['error'])
dff = pd.read_json(io.StringIO(data['processed_df']), orient = 'split')
# get divs
hist_div = get_hist_div(data['mapping'])
img_div = get_img_div(dff, data['all_species'], data['images'])
children = get_main_div(hist_div, img_div)
return children
# Distribution Section
# Callback to update which options are visible (histogram vs map)
@app.callback(
Output('dist-options', 'children'),
Input('dist-view-btn', 'n_clicks'),
Input('dist-view-btn', 'children'),
Input('memory', 'data')
)
def update_dist_view(n_clicks, children, jsonified_data):
'''
Updates the upper left distribution options based on selected distribution chart (histogram or map).
Activates on click to change, defaults to histogram view.
Parameters:
-----------
n_clicks - Number of clicks.
children - Label on button, determins which distribution options to show.
jsonified_data - Saved dictionary of DataFrame, species options, and mapping (boolean on lat/lon availability).
Returns:
--------
hist_div or map_div - The HTML Div corresponding to the selected distribution figure.
'''
data = json.loads(jsonified_data)
if n_clicks == 0 or n_clicks == None:
return get_hist_div(data['mapping'])
if n_clicks > 0:
if children == "Show Histogram":
return get_hist_div(data['mapping'])
else:
return get_map_div()
# Callback to update the distribution figure (histogram or map)
@app.callback(
#dist output
Output(component_id='dist-plot', component_property='figure'),
#input x_var
Input(component_id='x-variable', component_property='value'),
#input color_by
Input(component_id='color-by', component_property='value'),
#input sort_by
Input(component_id='sort-by', component_property='value'),
#button information
Input(component_id='dist-view-btn', component_property='children'),
# Saved Data
Input('memory', 'data')
)
def update_dist_plot(x_var, color_by, sort_by, btn, jsonified_data):
'''
Updates distribution figure with either map or histogram based on selections.
Selection is based on current label of the button ('Map View' or 'Show Histogram'), which updates prior to graph.
Parameters:
-----------
x_var - User-selected variable to plot distribution.
color_by - User-selected property to color the plot by.
sort_by - User-selected ordering of bar charts (Alphabetical, Ascending, or Descending).
btn - Current label of the button ('Map View' or 'Show Histogram').
jsonified_data - Saved dictionary of DataFrame, species options, and mapping (boolean on lat/lon availability).
Returns:
--------
fig - Figure returned from appropriate function call: histogram or map of the distribution of the requested variable.
'''
# open dataframe from saved data
data = json.loads(jsonified_data)
dff = pd.read_json(io.StringIO(data['processed_df']), orient = 'split')
# get distribution graph based on button value
if btn == "Show Histogram":
return make_map(dff, color_by)
else:
return make_hist_plot(dff, x_var, color_by, sort_by)
# Pie Section
@app.callback(
#pie output
Output(component_id='pie-plot', component_property='figure'),
#pie input (var)
Input(component_id='prct-brkdwn', component_property='value'),
# Saved Data
Input('memory', 'data')
)
def update_pie_plot(var, jsonified_data):
'''
Updates the pie chart of dataset specimens based on user selection of variable to color by.
Parameters:
-----------
var - User-selected categorical variable by which to color.
jsonified_data - Saved dictionary of DataFrame, species options, and mapping (boolean on lat/lon availability).
Returns:
--------
fig - Pie chart figure returned from function call: percentage breakdown of `var` samples in the dataset.
'''
# open dataframe from saved data
data = json.loads(jsonified_data)
dff = pd.read_json(io.StringIO(data['processed_df']), orient = 'split')
return make_pie_plot(dff, var)
# Image Section
# Callback for Image Species Selection
@app.callback(
Output(component_id = 'subspecies-show', component_property= 'options'),
Input(component_id = 'species-show', component_property = 'value'),
Input('memory', 'data')
)
def set_subspecies_options(selected_species, jsonified_data):
'''
Sets subspecies options in dropdown based on user-selected species.
Parameters:
-----------
jsonified_data - Saved dictionary of DataFrame, species options, and mapping (boolean on lat/lon availability).
Returns:
--------
list of subspecies options based on user-selected species.
'''
data = json.loads(jsonified_data)
all_species = data['all_species']
return [{'label': i, 'value': i} for i in all_species[selected_species]]
# Callback for Image Subspecies Selection
@app.callback(
Output(component_id = 'subspecies-show', component_property= 'value'),
Input(component_id = 'subspecies-show', component_property = 'options')
)
def set_subspecies_value(available_options):
# Collect selected subspecies to display in multi-select dropdown.
return available_options[0]['value']
# Image & Display Images Button Callback
@app.callback(
Output('image-1', 'children'),
Input('display-img', 'n_clicks'),
Input('memory', 'data'),
State('subspecies-show', 'value'),
State('which-view', 'value'),
State('which-sex', 'value'),
State('hybrid?', 'value'),
State('num-images', 'value'),
prevent_initial_call = True
)
# Retrieve selected number of images
def update_display(n_clicks, jsonified_data, subspecies, view, sex, hybrid, num_images):
'''
Retrieves the user-selected number of images adhering to their chosen parameters when the 'Display Images' button is pressed.
Parameters:
-----------
n_clicks - Number of times the 'Display Images' button has been pressed.
jsonified_data - Saved dictionary of DataFrame, species options, and mapping (boolean on lat/lon availability).
subspecies - String. Subspecies of specimen selected by the user.
view - String. View of specimen selected by the user.
sex - String. Sex of specimen selected by the user.
hybrid - String. Hybrid status of specimen selected by the user.
num_images - Integer. Number of images requested by the user. Default value is 1 (in get_filename).
Returns:
--------
Imgs - (Return of function call) List of html image elements with `src` element pointing to paths for the requested number of images matching given parameters.
Returns html header4 "No Such Images. Please make another selection." if no images matching parameters exist.
Returns html header4 "Please make a selection." If number of images isn't specified.
'''
if n_clicks > 0 and (view != [] and sex != [] and hybrid != []):
# Unpack json for saved dataframe
data = json.loads(jsonified_data)
dff = pd.read_json(io.StringIO(data['processed_df']), orient = 'split')
return get_images(dff, subspecies, view, sex, hybrid, num_images)
elif n_clicks == 0:
return dash.no_update
else:
return html.H4("Please make a selection.",
style = {'color': 'MidnightBlue'})
if __name__ == '__main__':
app.run()