-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
executable file
·210 lines (162 loc) · 6.71 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
from utils.data_loader import make_datapath_list, ImageDataset, ImageTransform, MaskTransform
from models.UNet_with_PConv import PConvUNet
from models.loss import Losses
from torchvision.utils import make_grid
from torchvision.utils import save_image
from torchvision import models
from collections import OrderedDict
from tqdm import tqdm
import matplotlib.pyplot as plt
import torch.optim as optim
import torch.nn as nn
import argparse
import time
import torch
import os
torch.manual_seed(44)
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
def fix_model_state_dict(state_dict):
'''
remove 'module.' of dataparallel
'''
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k
if name.startswith('module.'):
name = name[7:]
new_state_dict[name] = v
return new_state_dict
def plot_log(data, save_model_name='model'):
plt.cla()
plt.plot(data, label='total_loss')
plt.legend()
plt.xlabel('epoch')
plt.ylabel('loss')
plt.title('Loss')
plt.savefig('./logs/'+save_model_name+'.png')
def unnormalize(x):
x = x.transpose(1, 3)
#mean, std
x = x * torch.Tensor((0.5, )) + torch.Tensor((0.5, ))
x = x.transpose(1, 3)
return x
def evaluate(model, dataset, device, filename):
image, mask, gt = zip(*[dataset[i] for i in range(8)])
image = torch.stack(image)
mask = torch.stack(mask)
gt = torch.stack(gt)
with torch.no_grad():
output, _ = model(image.to(device), mask.to(device))
output = output.to(torch.device('cpu'))
output_comp = mask * image + (1 - mask) * output
# reverse for display image
image = mask * unnormalize(image) + (1 - mask)
mask = (1 - mask)
grid = make_grid(torch.cat((mask, unnormalize(output), image,
unnormalize(output_comp), unnormalize(gt)), dim=0))
save_image(grid, filename)
def check_dir():
if not os.path.exists('./logs'):
os.mkdir('./logs')
if not os.path.exists('./checkpoints'):
os.mkdir('./checkpoints')
if not os.path.exists('./result'):
os.mkdir('./result')
def get_parser():
parser = argparse.ArgumentParser(
prog='Image Inpainting using Patial Convolutions',
usage='python3 main.py',
description='This module demonstrates image inpainting using U-Net with patial convolutions.',
add_help=True)
parser.add_argument('-e', '--epoch', type=int, default=10000, help='Number of epochs')
parser.add_argument('-b', '--batch_size', type=int, default=6, help='Batch size')
parser.add_argument('-s', '--image_size', type=int, default=256)
parser.add_argument('-f', '--finetune', action='store_true')
parser.add_argument('--lr', type=float, default=2e-4)
parser.add_argument('--lr_finetune', type=float, default=5e-5)
return parser
def train_model(pconv_unet, dataloader, val_dataset, num_epochs, parser, save_model_name='model'):
check_dir()
device = "cuda" if torch.cuda.is_available() else "cpu"
pconv_unet.to(device)
"""use GPU in parallel"""
if device == 'cuda':
pconv_unet = torch.nn.DataParallel(pconv_unet)
print("parallel mode")
print("device:{}".format(device))
if parser.finetune:
lr = parser.lr_fine
pconv_unet.fine_tune = True
else:
lr = parser.lr
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, pconv_unet.parameters()), lr=lr)
criterion = Losses().to(device)
torch.backends.cudnn.benchmark = True
num_train_imgs = len(dataloader.dataset)
batch_size = dataloader.batch_size
lambda_dict = {'valid':1.0, 'hole':6.0, 'perceptual':0.05, 'style':120, 'tv':0.1}
iteration = 1
losses = []
for epoch in range(num_epochs+1):
pconv_unet.train()
t_epoch_start = time.time()
epoch_loss = 0.0
print('-----------')
print('Epoch {}/{}'.format(epoch, num_epochs))
print('(train)')
for images, mask, gt in tqdm(dataloader):
# if size of minibatch is 1, an error would be occured.
if images.size()[0] == 1:
continue
images = images.to(device)
mask = mask.to(device)
gt = gt.to(device)
mini_batch_size = images.size()[0]
output, _ = pconv_unet(images, mask)
loss_dict = criterion(images, mask, output, gt)
loss = 0.0
for key, _lambda in lambda_dict.items():
loss += _lambda * loss_dict[key]
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_loss += loss.item()
iteration += 1
t_epoch_finish = time.time()
print('-----------')
print('epoch {}'.format(epoch))
print('total_loss:{:.4f}'.format(epoch_loss/batch_size))
print('timer: {:.4f} sec.'.format(t_epoch_finish - t_epoch_start))
losses.append(epoch_loss/batch_size)
t_epoch_start = time.time()
plot_log(losses, save_model_name)
if(epoch%10 == 0):
torch.save(pconv_unet.state_dict(), 'checkpoints/'+save_model_name+'_'+str(epoch)+'.pth')
pconv_unet.eval()
evaluate(pconv_unet, val_dataset, device, '{:s}/test_{:d}.jpg'.format('result', epoch))
return pconv_unet
def main(parser):
pconv_unet = PConvUNet()
'''load'''
#pconv_weights = torch.load('./checkpoints/PConvUNet_PConvUNet_1000.pth')
#pconv_unet.load_state_dict(fix_model_state_dict(pconv_weights))
train_img_list, val_img_list = make_datapath_list(iorm='img', path='img_align_celeba' ,phase='train')
mask_list = make_datapath_list(iorm='mask', path='mask_rectangle')
mean = (0.5,)
std = (0.5,)
size = (parser.image_size, parser.image_size)
batch_size = parser.batch_size
num_epochs = parser.epoch
train_dataset = ImageDataset(img_list=train_img_list, mask_list=mask_list,
img_transform=ImageTransform(size=size, mean=mean, std=std),
mask_transform=MaskTransform(size=size))
val_dataset = ImageDataset(img_list=val_img_list, mask_list=mask_list,
img_transform=ImageTransform(size=size, mean=mean, std=std),
mask_transform=MaskTransform(size=size))
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) #num_workers=4
pconv_unet_update = train_model(pconv_unet, dataloader=train_dataloader,
val_dataset=val_dataset, num_epochs=num_epochs,
parser=parser, save_model_name='PConvUNet_Rectangle')
if __name__ == "__main__":
parser = get_parser().parse_args()
main(parser)