-
Notifications
You must be signed in to change notification settings - Fork 59
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
onnx2daq fails with yolov3 network #64
Comments
It actually fails for all onnx object detection models. |
I got similar problem with my own .onnx. I compiled the code with debug mode and tried to convert ONNX yolov3.onnx and I got this error #0 __GI_raise (sig=sig@entry=6) at ../sysdeps/unix/sysv/linux/raise.c:50
#1 0x00007ffff7a4c899 in __GI_abort () at abort.c:79
#2 0x00007ffff7e1f5f6 in ?? () from /lib/x86_64-linux-gnu/libstdc++.so.6
#3 0x00007ffff7e2b9ec in ?? () from /lib/x86_64-linux-gnu/libstdc++.so.6
#4 0x00007ffff7e2ba47 in std::terminate() () from /lib/x86_64-linux-gnu/libstdc++.so.6
#5 0x00007ffff7e2bca9 in __cxa_throw () from /lib/x86_64-linux-gnu/libstdc++.so.6
#6 0x00007ffff7e21f04 in std::__throw_out_of_range(char const*) ()
from /lib/x86_64-linux-gnu/libstdc++.so.6
#7 0x0000555555686023 in std::__detail::_Map_base<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, onnx_daq::Value*>, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, onnx_daq::Value*> >, std::__detail::_Select1st, std::equal_to<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::hash<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::__detail::_Mod_range_hashing, std::__detail::_Default_ranged_hash, std::__detail::_Prime_rehash_policy, std::__detail::_Hashtable_traits<true, false, true>, true>::at (this=0x7fffffffc600, __k="W74")
at /usr/include/c++/9/bits/hashtable_policy.h:750
#8 0x0000555555683999 in std::unordered_map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, onnx_daq::Value*, std::hash<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::equal_to<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, onnx_daq::Value*> > >::at (this=0x7fffffffc600, __k="W74")
at /usr/include/c++/9/bits/unordered_map.h:1002
#9 0x000055555567dcaf in onnx_daq::graphProtoToGraph (gp=..., nested=false)
at /home/ardiya/Workspace/DNNLibrary/third_party/onnx/onnx/common/ir_pb_converter.cc:287
#10 0x000055555567e52d in onnx_daq::ImportModelProto (mp=...)
at /home/ardiya/Workspace/DNNLibrary/third_party/onnx/onnx/common/ir_pb_converter.cc:331
#11 0x0000555555646fd5 in onnx_daq::optimization::Optimizer::optimize (this=0x7fffffffcb40, mp_in=...)
at /home/ardiya/Workspace/DNNLibrary/third_party/onnx/onnx/optimizer/optimize.h:26
#12 0x0000555555639d9a in onnx_daq::optimization::OptimizeFixed (mp_in=...,
names=std::vector of length 18, capacity 18 = {...})
at /home/ardiya/Workspace/DNNLibrary/third_party/onnx/onnx/optimizer/optimize.cc:38
#13 0x000055555557711d in dnn::OnnxConverter::Convert (this=0x7fffffffd880, model_proto=...,
table_file="") at /home/ardiya/Workspace/DNNLibrary/tools/onnx2daq/OnnxConverter.cpp:646
#14 0x000055555556bfc0 in main (argc=3, argv=0x7fffffffdbc8)
at /home/ardiya/Workspace/DNNLibrary/tools/onnx2daq/onnx2daq.cpp:34 from frame 9, file ir_pb_converter.cc line 287, which is (gdb) print input
$1 = "W74"
(gdb) print value_by_name_of
$2 = std::unordered_map with 478 elements = {["yolonms_layer_1/ExpandDims_1:0"] = 0x55555b61a6e0,
["TFNodes/yolo_evaluation_layer_1/concat_7:0"] = 0x55555b619640,
["TFNodes/yolo_evaluation_layer_1/strided_slice_56:0"] = 0x55555b619140,
["TFNodes/yolo_evaluation_layer_1/add_5:0"] = 0x55555b618880,
["TFNodes/yolo_evaluation_layer_1/strided_slice_54:0"] = 0x55555b618380,
["TFNodes/yolo_evaluation_layer_1/mul_15:0"] = 0x55555b617650,
["TFNodes/yolo_evaluation_layer_1/strided_slice_52:0"] = 0x55555b616d00,
["TFNodes/yolo_evaluation_layer_1/add_4:0"] = 0x55555b616560,
["TFNodes/yolo_evaluation_layer_1/Sigmoid_6:0"] = 0x55555b616310,
["TFNodes/yolo_evaluation_layer_1/strided_slice_46:0"] = 0x55555b615cc0,
["TFNodes/yolo_evaluation_layer_1/truediv_23:0"] = 0x55555b6158a0,
["TFNodes/yolo_evaluation_layer_1/strided_slice_53:0"] = 0x55555b615040,
["TFNodes/yolo_evaluation_layer_1/mul_13:0"] = 0x55555b614a50,
["TFNodes/yolo_evaluation_layer_1/strided_slice_48:0"] = 0x55555b614240,
["yolo_evaluation_layer_1/concat_10:0_tx"] = 0x55555b613d20,
["TFNodes/yolo_evaluation_layer_1/Reshape_17:0"] = 0x55555b6134b0,
["TFNodes/yolo_evaluation_layer_1/mul_18:0"] = 0x55555b613240,
["TFNodes/yolo_evaluation_layer_1/Sigmoid_7:0"] = 0x55555b613050,
["TFNodes/yolo_evaluation_layer_1/Sigmoid_8:0"] = 0x55555b612840,
["TFNodes/yolo_evaluation_layer_1/strided_slice_51:0"] = 0x55555b612220,
["TFNodes/yolo_evaluation_layer_1/Reshape_15__87:0"] = 0x55555b611a60,
["TFNodes/yolo_evaluation_layer_1/Reshape_15/shape_Concat__36:0"] = 0x55555b6114b0,
["TFNodes/yolo_evaluation_layer_1/concat_6:0"] = 0x55555b610ea0,
["TFNodes/yolo_evaluation_layer_1/Tile_5/multiples_Concat__46:0"] = 0x55555b6105d0,
["TFNodes/yolo_evaluation_layer_1/Reshape_15/shape_Unsqueeze__32:0"] = 0x55555b60da10,
["TFNodes/yolo_evaluation_layer_1/arange_4__77_loop:1"] = 0x55555b60e520,
["TFNodes/yolo_evaluation_layer_1/arange_4__77_loop:0"] = 0x55555b60e450,
["TFNodes/yolo_evaluation_layer_1/arange_4__77_trip_cnt:0"] = 0x55555b60d780,
["TFNodes/yolo_evaluation_layer_1/arange_4__77_div:0"] = 0x55555b60cfc0,
["TFNodes/yolo_evaluation_layer_1/arange_4__77_cast_diff:0"] = 0x55555b60cd40,
["TFNodes/yolo_evaluation_layer_1/arange_4__77_diff__78:0"] = 0x55555b60ca50,
["TFNodes/yolo_evaluation_layer_1/strided_slice_44:0"] = 0x55555b5cb8a0,
["TFNodes/yolo_evaluation_layer_1/Reshape_14:0"] = 0x55555b5c8b10,
["TFNodes/yolo_evaluation_layer_1/arange_5__52_trip_cnt:0"] = 0x55555b5caa10,
["TFNodes/yolo_evaluation_layer_1/arange_5__52_ceil:0"] = 0x55555b5ca640,
["TFNodes/yolo_evaluation_layer_1/arange_5__52_cast_diff:0"] = 0x55555b5c9e90,
["TFNodes/yolo_evaluation_layer_1/arange_5__52_diff__53:0"] = 0x55555b5c9b50,
["TFNodes/yolo_evaluation_layer_1/strided_slice_45:0"] = 0x55555b604060,
["TFNodes/yolo_evaluation_layer_1/Reshape_3__306:0"] = 0x55555b5d8770,
["TFNodes/yolo_evaluation_layer_1/Reshape_15/shape_Unsqueeze__33:0"] = 0x55555b5c8930,
["TFNodes/yolo_evaluation_layer_1/strided_slice_13:0"] = 0x55555b5da1c0,
["TFNodes/yolo_evaluation_layer_1/Cast_8:0"] = 0x55555b611150,
["batch_norm_output_buffer64"] = 0x55555b59c670, ["model_1/add_23/add:0"] = 0x55555b5c44e0,
["model_1/leaky_re_lu_52/LeakyRelu:0"] = 0x55555b5c42c0,
["TFNodes/yolo_evaluation_layer_1/mul_7:0"] = 0x55555b5f7e80,
["convolution_output23"] = 0x55555b5c3a10, ["convolution_output57"] = 0x55555b5a4ed0,
["TFNodes/yolo_evaluation_layer_1/strided_slice_1:0"] = 0x55555b5cd130,
["model_1/leaky_re_lu_51/LeakyRelu:0"] = 0x55555b5c3630,
["TFNodes/yolo_evaluation_layer_1/Shape_2:0"] = 0x55555b5e9b70,
["TFNodes/yolo_evaluation_layer_1/strided_slice_7__219:0"] = 0x55555b5ce4a0,
["model_1/leaky_re_lu_68/LeakyRelu:0"] = 0x55555b5fec20, ["convolution_output25"] = 0x55555b5c1e80,
["model_1/leaky_re_lu_49/LeakyRelu:0"] = 0x55555b5c1aa0,
["TFNodes/yolo_evaluation_layer_1/Sigmoid_5:0"] = 0x55555b5f65f0,
["model_1/add_21/add:0"] = 0x55555b5c0dc0, ["model_1/leaky_re_lu_48/LeakyRelu:0"] = 0x55555b5c0ba0,
["convolution_output12"] = 0x55555b5e6930, ["batch_norm_output_buffer25"] = 0x55555b5bfb90,
["model_1/add_20/add:0"] = 0x55555b5bf220, ["model_1/leaky_re_lu_45/LeakyRelu:0"] = 0x55555b5be3d0,
["convolution_output30"] = 0x55555b5bdb20, ["model_1/add_6/add:0"] = 0x55555b5a3e10,
["model_1/leaky_re_lu_44/LeakyRelu:0"] = 0x55555b5bd7d0,
["batch_norm_output_buffer40"] = 0x55555b5b2e00, ["batch_norm_output_buffer28"] = 0x55555b5bd450,
["convolution_output34"] = 0x55555b5ba3a0,
["TFNodes/yolo_evaluation_layer_1/Reshape_9:0"] = 0x55555b5f5b40,
["convolution_output54"] = 0x55555b5a79a0,
["TFNodes/yolo_evaluation_layer_1/concat_10:0"] = 0x55555b613800,
["model_1/leaky_re_lu_43/LeakyRelu:0"] = 0x55555b5bc7e0,
["TFNodes/yolo_evaluation_layer_1/strided_slice_37:0"] = 0x55555b5fc2c0,
["model_1/leaky_re_lu_50/LeakyRelu:0"] = 0x55555b5c2730,
["model_1/leaky_re_lu_41/LeakyRelu:0"] = 0x55555b5bac50,
["batch_norm_output_buffer48"] = 0x55555b5aa6b0, ["batch_norm_output_buffer32"] = 0x55555b5b9c40,
["convolution_output35"] = 0x55555b5b9750, ["convolution_output28"] = 0x55555b5bf6a0,
["TFNodes/yolo_evaluation_layer_1/arange__271_diff__272:0"] = 0x55555b5d3900,
["TFNodes/yolo_evaluation_layer_1/Shape_3:0"] = 0x55555b602a50,
["model_1/add_17/add:0"] = 0x55555b5b92e0,
["TFNodes/yolo_evaluation_layer_1/arange_5__52_loop:1"] = 0x55555b609270,
["model_1/leaky_re_lu_5/LeakyRelu:0"] = 0x55555b599fb0,
["batch_norm_output_buffer15"] = 0x55555b5c7f60,
["model_1/leaky_re_lu_32/LeakyRelu:0"] = 0x55555b5b3180, ["model_1/add_19/add:0"] = 0x55555b5bca00,
["batch_norm_output_buffer34"] = 0x55555b5b80b0, ["model_1/add_16/add:0"] = 0x55555b5b7750,
["convolution_output38"] = 0x55555b5b6c80,
["TFNodes/yolo_evaluation_layer_1/mul_16:0"] = 0x55555b615660,
["convolution_output18"] = 0x55555b5c7a30,
["TFNodes/yolo_evaluation_layer_1/Squeeze:0"] = 0x55555b595170,
["convolution_output39"] = 0x55555b5b6030, ["convolution_output10"] = 0x55555b5fd750,
["TFNodes/yolo_evaluation_layer_1/Tile:0"] = 0x55555b5d48c0,
["batch_norm_output_buffer16"] = 0x55555b5c7330, ["batch_norm_output_buffer37"] = 0x55555b5b5620,
["TFNodes/yolo_evaluation_layer_1/mul_17:0"] = 0x55555b619750,
["batch_norm_output_buffer38"] = 0x55555b5b4990...} @daquexian could you provide any guidance on how to fix this? |
Any updates on this? |
Having the same error while trying to convert a custom SSD object detection model. The original model was implemented in GluonCV, fine-tuned from one of the models in the ZOO, and converted to ONNX format. |
this is the error while trying to convert https://github.com/onnx/models/tree/master/vision/object_detection_segmentation/yolov3
The text was updated successfully, but these errors were encountered: