forked from huggingface/optimum-benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
112 lines (86 loc) · 4.12 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from dataclasses import dataclass, field
from typing import Any, Dict, Optional
from ...import_utils import onnxruntime_version
from ...task_utils import TEXT_GENERATION_TASKS
from ..config import BackendConfig
QUANTIZATION_CONFIG = {
"is_static": False,
"format": "QOperator",
# is_static and format are mandatory
}
CALIBRATION_CONFIG = {
"method": "MinMax"
# method is mandatory
}
AUTO_QUANTIZATION_CONFIG = {
"is_static": False
# is_static is mandatory
}
IO_BINDING_LIBRARIES = ["transformers", "timm"]
IO_BINDING_PROVIDERS = ["CPUExecutionProvider", "CUDAExecutionProvider"]
DEVICE_PROVIDER_MAP = {"cpu": "CPUExecutionProvider", "cuda": "CUDAExecutionProvider"}
@dataclass
class ORTConfig(BackendConfig):
name: str = "onnxruntime"
version: Optional[str] = onnxruntime_version()
_target_: str = "optimum_benchmark.backends.onnxruntime.backend.ORTBackend"
# load options
no_weights: bool = False
# export options
export: bool = True
use_cache: bool = True
use_merged: bool = False
torch_dtype: Optional[str] = None
# provider options
provider: Optional[str] = None
provider_options: Dict[str, Any] = field(default_factory=dict)
# inference options
use_io_binding: Optional[bool] = None
session_options: Dict[str, Any] = field(default_factory=dict)
# null, O1, O2, O3, O4
auto_optimization: Optional[str] = None
auto_optimization_config: Dict[str, Any] = field(default_factory=dict)
# null, arm64, avx2, avx512, avx512_vnni, tensorrt
auto_quantization: Optional[str] = None
auto_quantization_config: Dict[str, Any] = field(default_factory=dict)
# minmax, entropy, l2norm, percentiles
auto_calibration: Optional[str] = None
auto_calibration_config: Dict[str, Any] = field(default_factory=dict)
# manual optimization options
optimization: bool = False
optimization_config: Dict[str, Any] = field(default_factory=dict)
# manual quantization options
quantization: bool = False
quantization_config: Dict[str, Any] = field(default_factory=dict)
# manual calibration options
calibration: bool = False
calibration_config: Dict[str, Any] = field(default_factory=dict)
def __post_init__(self):
super().__post_init__()
if self.device not in ["cpu", "cuda"]:
raise ValueError(f"ORTBackend only supports CPU and CUDA devices, got {self.device}")
if not self.no_weights and not self.export and self.torch_dtype is not None:
raise NotImplementedError("Can't convert an exported model's weights to a different dtype.")
if self.provider is None:
self.provider = DEVICE_PROVIDER_MAP[self.device]
if self.use_io_binding is None:
self.use_io_binding = self.provider in IO_BINDING_PROVIDERS and self.library in IO_BINDING_LIBRARIES
if self.provider == "TensorrtExecutionProvider" and self.task in TEXT_GENERATION_TASKS:
raise NotImplementedError("we don't support TensorRT for text generation tasks")
if self.quantization:
self.quantization_config = {**QUANTIZATION_CONFIG, **self.quantization_config}
# raise ValueError if the quantization is static but calibration is not enabled
if self.quantization_config["is_static"] and self.auto_calibration is None and not self.calibration:
raise ValueError(
"Quantization is static but calibration is not enabled. "
"Please enable calibration or disable static quantization."
)
if self.auto_quantization is not None:
self.auto_quantization_config = {**AUTO_QUANTIZATION_CONFIG, **self.auto_quantization_config}
if self.auto_quantization_config["is_static"] and self.auto_calibration is None and not self.calibration:
raise ValueError(
"Quantization is static but calibration is not enabled. "
"Please enable calibration or disable static quantization."
)
if self.calibration:
self.calibration_config = {**CALIBRATION_CONFIG, **self.calibration_config}