-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsemidqn_prioritized.py
282 lines (246 loc) · 10.7 KB
/
semidqn_prioritized.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import csv
import time
import argparse
import gym
from agent_prioritized import SemiDQNAgent
from replay import Transition
import torch
import gym_lifter
import datetime
import os
def run_prioritized(env_id='Lifter-v0',
gamma=0.99999,
lr=1e-4,
polyak=1e-3,
hidden1=256,
hidden2=256,
num_ep=1000,
buffer_size=int(1e6),
fill_buffer=20000,
batch_size=32,
train_interval=50,
start_train=10000,
eval_interval=20,
eval_num=5,
T=300.0,
priority_exponent=.6,
importance_sampling_exponent_begin=.4,
importance_sampling_exponent_end=1.,
uniform_sample_prob=1e-3,
normalize_weights=True,
clipped=False,
device='cuda',
pth=None,
render=False):
arg_dict = locals()
num_ep = int(num_ep)
buffer_size = int(buffer_size)
env = gym.make(env_id)
test_env = gym.make(env_id)
dimS = env.observation_space.shape[0] # dimension of state space
nA = env.action_space.n # number of actions
# (physical) length of the time horizon of each truncated episode
# each episode run for t \in [0, T)
# set for RL in semi-MDP setting
max_epsilon = 1.
min_epsilon = 0.02
# linearly scheduled $\epsilon$
exploration_schedule = LinearSchedule(begin_t=0,
end_t=num_ep // 2,
begin_value=max_epsilon,
end_value=min_epsilon)
# linearly scheduled importance sampling weight exponent
anneal_schedule = LinearSchedule(begin_t=0,
end_t=num_ep * 200,
begin_value=importance_sampling_exponent_begin,
end_value=importance_sampling_exponent_end)
agent = SemiDQNAgent(
dimS=dimS,
nA=nA,
action_map=env.action_map,
gamma=gamma,
hidden1=hidden1,
hidden2=hidden2,
lr=lr,
tau=polyak,
buffer_size=buffer_size,
batch_size=batch_size,
priority_exponent=priority_exponent,
anneal_schedule=anneal_schedule,
uniform_sample_prob=uniform_sample_prob,
normalize_weights=normalize_weights,
clipped=clipped,
device=device,
render=render
)
if pth is None:
# default location of directory for training log
pth = './log/' + env_id + '/'
os.makedirs(pth, exist_ok=True)
current_time = time.strftime("%m_%d-%H%_M_%S")
file_name = pth + 'prioritized_' + current_time
log_file = open(file_name + '.csv',
'w',
encoding='utf-8',
newline='')
eval_log_file = open(file_name + '_eval.csv',
'w',
encoding='utf-8',
newline='')
logger = csv.writer(log_file)
eval_logger = csv.writer(eval_log_file)
with open(pth + 'prioritized_' + current_time + '.txt', 'w') as f:
for key, val in arg_dict.items():
print(key, '=', val, file=f)
# start environment roll-out
total_operation_hr = T * num_ep
# number of evaluation is fixed to 200
evaluation_interval = total_operation_hr / 200
evaluation_count = 0
global_t = 0.
info = None
counter = 0
for i in range(num_ep):
s = env.reset()
t = 0. # physical elapsed time of the present episode
ep_reward = 0.
epsilon = exploration_schedule(i)
if global_t >= total_operation_hr:
break
while t < T:
if evaluation_count * evaluation_interval <= global_t:
# evaluation stage
result = agent.eval(test_env, T=14400, eval_num=eval_num)
log = [i] + result
eval_logger.writerow(log)
evaluation_count += 1
a = agent.get_action(s, epsilon)
s_next, r, d, info = env.step(a)
ep_reward += gamma ** t * r
dt = info['dt']
t = info['elapsed_time']
transition = Transition(s_tm1=s, a_tm1=a, r_t=r, s_t=s_next, dt=dt, d=d)
agent.replay.add(item=transition, priority=agent.max_seen_priority)
global_t += dt
counter += 1
s = s_next
if counter > start_train and counter % train_interval == 0:
# training stage
# single step per one transition observation
for _ in range(train_interval):
agent.train()
log_time = datetime.datetime.now(tz=None).strftime("%Y-%m-%d %H:%M:%S")
replay_size = agent.replay.size
op_log = env.operation_log
# TODO : improve logging
print('+' + '=' * 78 + '+')
print('+' + '-' * 31 + 'TRAIN-STATISTICS' + '-' * 31 + '+')
print('{} (episode {} / epsilon = {:.2f}) reward = {:.4f} \nmax_seen_priority = {:.2f} \nreplay size = {}'.format(log_time,
i, epsilon, ep_reward, agent.max_seen_priority, replay_size))
print('+' + '-' * 32 + 'FAB-STATISTICS' + '-' * 32 + '+')
print('carried = {}/{}\n'.format(op_log['carried'], sum(op_log['total'])) +
# 'carried_pod = {}/{}\n'.format(info['carried_pod'], info['pod_total']) +
'remain quantity : {}\n'.format(op_log['waiting_quantity']) +
'visit_count : {}\n'.format(op_log['visit_count']) +
'load_two : {}\n'.format(op_log['load_two']) +
'unload_two : {}\n'.format(op_log['unload_two']) +
'load_sequential : {}'.format(op_log['load_sequential'])
)
print('+' + '=' * 78 + '+')
print('\n', end='')
logger.writerow(
[i, ep_reward, op_log['carried']]
+ op_log['waiting_quantity']
+ list(op_log['visit_count'])
+ [op_log['load_two'], op_log['unload_two'], op_log['load_sequential']]
+ list(op_log['total'])
+ [op_log['pod_total']]
)
log_file.close()
eval_log_file.close()
return
"""
def eval_agent(agent, env_id, eval_num=5, render=False):
log = []
for ep in range(eval_num):
env = gym.make(env_id)
state = env.reset()
step_count = 0
ep_reward = 0
done = False
while not done:
if render and ep == 0:
env.render()
action = agent.get_action(state, 0.0)
next_state, reward, done, _ = env.step(action)
step_count += 1
state = next_state
ep_reward += reward
if render and ep == 0:
env.close()
log.append(ep_reward)
avg = sum(log) / eval_num
return avg
"""
class LinearSchedule:
"""Linear schedule, used for exploration epsilon in DQN agents."""
# taken from https://github.com/deepmind/dqn_zoo/blob/master/dqn_zoo/parts.py
def __init__(self,
begin_value,
end_value,
begin_t,
end_t=None,
decay_steps=None):
if (end_t is None) == (decay_steps is None):
raise ValueError('Exactly one of end_t, decay_steps must be provided.')
self._decay_steps = decay_steps if end_t is None else end_t - begin_t
self._begin_t = begin_t
self._begin_value = begin_value
self._end_value = end_value
def __call__(self, t):
"""Implements a linear transition from a begin to an end value."""
frac = min(max(t - self._begin_t, 0), self._decay_steps) / self._decay_steps
return (1 - frac) * self._begin_value + frac * self._end_value
if __name__ == '__main__':
parser = argparse.ArgumentParser()
default_device = 'cuda' if torch.cuda.is_available() else 'cpu'
parser.add_argument('--env', required=True)
parser.add_argument('--num_ep', required=False, default=1e3, type=float)
parser.add_argument('--eval_interval', required=False, default=10, type=int)
parser.add_argument('--eval_num', required=False, default=3, type=int)
parser.add_argument('--render', required=False, default=False, type=bool)
parser.add_argument('--tau', required=False, default=1e-3, type=float)
parser.add_argument('--q_lr', required=False, default=2e-4, type=float)
parser.add_argument('--hidden1', required=False, default=256, type=int)
parser.add_argument('--hidden2', required=False, default=256, type=int)
parser.add_argument('--train_interval', required=False, default=50, type=int)
parser.add_argument('--start_train', required=False, default=1000, type=int)
parser.add_argument('--fill_buffer', required=False, default=1000, type=int)
parser.add_argument('--batch_size', required=False, default=32, type=int)
parser.add_argument('--device', required=False, default=default_device, type=str)
parser.add_argument('--gamma', required=False, default=0.999, type=float)
parser.add_argument('--num_trials', required=False, default=1, type=int)
parser.add_argument('--clipped', action='store_true')
parser.add_argument('--pth', required=False, default=None, type=str)
parser.add_argument('--T', required=False, default=300.0, type=float)
args = parser.parse_args()
for _ in range(args.num_trials):
run_prioritized(args.env,
gamma=args.gamma,
lr=args.q_lr,
polyak=args.tau,
hidden1=args.hidden1,
hidden2=args.hidden2,
num_ep=args.num_ep,
buffer_size=int(1e6),
fill_buffer=args.fill_buffer,
batch_size=args.batch_size,
train_interval=args.train_interval,
start_train=args.start_train,
eval_interval=args.eval_interval,
eval_num=args.eval_num,
T=args.T,
pth=args.pth,
clipped=args.clipped,
device=args.device,
render=args.render)