forked from geekcomputers/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClassification_human_orr_horse.py
47 lines (41 loc) · 2.06 KB
/
Classification_human_orr_horse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import pickle
import tensorflow as tf
model = tf.keras.models.Sequential([tf.keras.layers.Conv2D(16, (3, 3), activation='relu', input_shape=(200, 200, 3)),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(16, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(16, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dense(1, activation="sigmoid")
])
model.summary()
from tensorflow.keras.optimizers import RMSprop
model.compile(optimizer=RMSprop(lr=0.001), loss='binary_crossentropy', metrics=['acc'])
from tensorflow.keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1 / 255)
train_generator = train_datagen.flow_from_directory('E:/ARYAN/Desktop/python_tensorflow/Classification_human-or-horse',
target_size=(200, 200),
batch_size=222,
class_mode='binary')
model.fit_generator(train_generator, steps_per_epoch=6, epochs=1, verbose=1)
filename = "myTf1.sav"
pickle.dump(model, open(filename, 'wb'))
from tkinter import Tk
from tkinter.filedialog import askopenfilename
from keras.preprocessing import image
import numpy as np
Tk().withdraw()
filename = askopenfilename()
print(filename)
img = image.load_img(filename, target_size=(200, 200))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
images = np.vstack([x])
classes = model.predict(images, batch_size=10)
print(classes[0])
if classes[0] > 0.5:
print(filename + " is a human")
else:
print(filename + " is a horse")