-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
28 lines (24 loc) · 1.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import torch
import random
import numpy as np
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0 and torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
def collate_fn(batch):
max_len = max([len(f["input_ids"]) for f in batch])
input_ids = [f["input_ids"] + [0] * (max_len - len(f["input_ids"])) for f in batch]
input_mask = [[1.0] * len(f["input_ids"]) + [0.0] * (max_len - len(f["input_ids"])) for f in batch]
labels = [f["labels"] for f in batch]
entity_pos = [f["entity_pos"] for f in batch]
hts = [f["hts"] for f in batch]
input_ids = torch.tensor(input_ids, dtype=torch.long)
# cg_ids = [f["cg_ids"] + [0] * (max_len - len(f["input_ids"])) for f in batch]
# cg_ids = torch.tensor(cg_ids, dtype=torch.long)
# cg_ids = cg_ids.to(device=torch.device("cuda:0"))
input_mask = torch.tensor(input_mask, dtype=torch.float)
# output = (input_ids, input_mask, labels, entity_pos, hts, cg_ids)
output = (input_ids, input_mask, labels, entity_pos, hts)
return output