note: 某些链接是非空开的
-
Data-Driven/End2End
-
Algorithm|e2e | Can Autonomous Vehicles Identify, Recover From, and Adapt to Distribution Shifts?, 2000
-
Algorithm|e2e | Causal Confusion in Imitation Learning, 1900
-
Algorithm|e2e | DTPP: Differentiable Joint Conditional Prediction and Cost Evaluation for Tree Policy Planning in Autonomous Driving, 2300
-
Algorithm|e2e | VADv2: End-to-End Vectorized Autonomous Driving via Probabilistic Planning, 2402
-
Algorithm|e2e | DriveVLM: The Convergence of Autonomous Driving and Large Vision-Language Models
-
Algorithm|e2e | PiP: Planning-informed Trajectory Prediction for Autonomous Driving, 2000
-
Algorithm|e2e | Scene Transformer: A unified architecture for predicting multiple agent trajectories,2103
- 模型输入为perception object
- 使用mask来支持同步做planning&prediction
-
Algorithm|e2e | LOKI: Long Term and Key Intentions for Trajectory Prediction
-
Algorithm|e2e | MP3: A unified model to map, perceive, predict and plan
-
Algorithm|e2e | TNT
-
Algorithm|e2e | DenseTNT
-
Algorithm|e2e | MultiPath
-
Algorithm|e2e | MultiPath++
贡献有三点
- 精心设计下面几个方面提高效果:输入的表征及编码,融合编码及输出的分布。considering choices for input representation and encoding, fusing encodings, and representing the output distribution.
- 证明了以下几个方面对于行为预测很重要:稀疏编码,高效融合方法,基于控制的方法以及可学习的锚 (sparse encoding, efficient fusion methods, control-based methods, and learned anchors)
- we provided a practical guide for various tricks used for training and inference to improve robustness, increase diversity, handle missing data, and ensure fast convergence during training.
-
Algorithm|e2e | Hydra-MDP: End-to-end Multimodal Planning with Multi-target Hydra-Distillation, 2406
-
Algorithm | Synthesis and Stabilization of Complex Behaviors through Online Trajectory Optimization(iLQR/DDP)
-
Algorithm|IDM Driver & MOBIL Model
-
Algorithm|MARC: Multipolicy and Risk-aware Contingency Planning for Autonomous Driving, 2308
-
Algorithm | [Contingency Plan] Contingency Model Predictive Control for Automated Vehicles, 1907
-
Algorithm | [Contingency Plan] Contingency Model Predictive Control for Linear Time-Varying Systems, 2102
-
Algorithm | 使用branch MPC进行交互多模态运动规划 Interactive multi-modal motion planning with Branch Model Predictive Control, 2110
-
Algorithm | 抵达集/可达集(Reach Set & Reachable Set) Bridging the Gap Between Safety and Real-Time Performance in Receding-Horizon Trajectory Design for Mobile Robots, 1809
-
Curve
- Bezier Curve 贝塞尔曲线
- 端点插值
- 凸包性:贝塞尔曲线
- hodograph性质: 它的导数依旧是贝塞尔曲线
- 固定时间间隔:每一段定义在[0, 1]间
- Clothoid/Spiral(螺线)
- Quintic Polynomial
- Bezier Curve 贝塞尔曲线
-
Spline 样条曲线
-
Control
-
LQR | 线性二次调节器: 状态转移关系是线性的,目标函数是二次的调节器.
- 设计线性的转移方程
- 调节矩阵 Q, R的值使得效果最优. Q 对角阵每个值是其对应状态维度的error惩罚weight. R 是 控制维度 weight
- 寻找最优的gain set: k = lqr(Q, B, Q, R)
-
MPC | 模型预测控制
- 估计/测量系统当前状态
- 基于转移方程和目标函数优化 控制序列 u(k), u(k+1), ..., u(k+N-1)
- 取最开始的u(k)控制输入到控制器 (滚动优化)
MPC每一轮滚动优化可以使用LQR
-
- C++/Python/Matlab
- Tensorflow/PyTorch