Skip to content

Latest commit

 

History

History
98 lines (81 loc) · 6.93 KB

learning_material.md

File metadata and controls

98 lines (81 loc) · 6.93 KB

note: 某些链接是非空开的

PNC算法学习

  • Data-Driven/End2End

    • Notion: 数据驱动PNC && DayStore: Data-Driven Planning

    • Algorithm|dd | VectorNet code

    • Algorithm|e2e | Can Autonomous Vehicles Identify, Recover From, and Adapt to Distribution Shifts?, 2000

    • Algorithm|e2e | Causal Confusion in Imitation Learning, 1900

    • Algorithm|e2e | DTPP: Differentiable Joint Conditional Prediction and Cost Evaluation for Tree Policy Planning in Autonomous Driving, 2300

    • Algorithm|e2e | VADv2: End-to-End Vectorized Autonomous Driving via Probabilistic Planning, 2402

    • Algorithm|e2e | DriveVLM: The Convergence of Autonomous Driving and Large Vision-Language Models

    • Algorithm|e2e | PiP: Planning-informed Trajectory Prediction for Autonomous Driving, 2000

    • Algorithm|e2e | Scene Transformer: A unified architecture for predicting multiple agent trajectories,2103

      • 模型输入为perception object
      • 使用mask来支持同步做planning&prediction
    • Algorithm|e2e | LOKI: Long Term and Key Intentions for Trajectory Prediction

    • Algorithm|e2e | MP3: A unified model to map, perceive, predict and plan

    • Algorithm|e2e | TNT

    • Algorithm|e2e | DenseTNT

    • Algorithm|e2e | MultiPath

    • Algorithm|e2e | MultiPath++

      贡献有三点

      1. 精心设计下面几个方面提高效果:输入的表征及编码,融合编码及输出的分布。considering choices for input representation and encoding, fusing encodings, and representing the output distribution.
      2. 证明了以下几个方面对于行为预测很重要:稀疏编码,高效融合方法,基于控制的方法以及可学习的锚 (sparse encoding, efficient fusion methods, control-based methods, and learned anchors)
      3. we provided a practical guide for various tricks used for training and inference to improve robustness, increase diversity, handle missing data, and ensure fast convergence during training.
    • Algorithm|e2e | Hydra-MDP: End-to-end Multimodal Planning with Multi-target Hydra-Distillation, 2406

  • Algorithm|MPDM

  • Algorithm|EUDM

  • Algorithm|Spatial-temporal Semantic Corridor(SSC)

  • Algorithm|EPSILON

  • Algorithm|MDP && Algorithm|POMDP

  • Algorithm|Planning on a (Risk) Budget: Safe Non-Conservative Planning in Probabilistic Dynamic Environments

  • Algorithm | Synthesis and Stabilization of Complex Behaviors through Online Trajectory Optimization(iLQR/DDP)

  • Algorithm|MultiPath && Algorithm|MultiPath++

  • Algorithm|IDM Driver & MOBIL Model

  • Algorithm|MARC: Multipolicy and Risk-aware Contingency Planning for Autonomous Driving, 2308

  • Algorithm | [Contingency Plan] Contingency Model Predictive Control for Automated Vehicles, 1907

  • Algorithm | [Contingency Plan] Contingency Model Predictive Control for Linear Time-Varying Systems, 2102

  • Algorithm | 使用branch MPC进行交互多模态运动规划 Interactive multi-modal motion planning with Branch Model Predictive Control, 2110

  • Algorithm | 抵达集/可达集(Reach Set & Reachable Set) Bridging the Gap Between Safety and Real-Time Performance in Receding-Horizon Trajectory Design for Mobile Robots, 1809

  • Algorithm|Spatio-temporal Motion Planning for Autonomous Vehicles with Trapezoidal Prism Corridors and Be ́zier Curves(todo)

基础算法学习

在线学习课程

编程

  • C++/Python/Matlab
  • Tensorflow/PyTorch