-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathgenerate_model.R
68 lines (56 loc) · 2.03 KB
/
generate_model.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
generate_model <- function (
# Network parameters
true.model,
n.traders = 100,
n.edg = 100,
seg = 0.9, # determine initial segregation of the
# network. The higher seg, the higher the initial segregation
# In the currect procedure, the probability that a link be formed is
# - (1-seg)/(number of possible nodes), if the two traders have different approximate models
# - 1/(number of possible nodes) , if the two traders have the same approximate model
market.complet = 10, # number of securities which
# are traded. With higher securities, traders can trade on
# more precise temperature intervals
# Behavior parameters
risk.tak = 1/2, # Determine the distribution of risk
# taking behavior. The higher risk.taking, the more agent
# will try to buy (resp. sell) lower (resp. higher) than
# their reservation price.
ideo = 0.5, # Determines the degree of "ideology" embedded
# in the approximate models. If ideo is high, traders will not
# revise their approximate models easily, even when faced with
# strong evidence (conversely if low).
# Timing parameters
burn.in,
horizon,
n.seq
){
#####
## Set model's parameters and create corresponding network
#####
net <- PopulateNet( n.traders = n.traders,
risk.tak = risk.tak,
market.complet = market.complet,
ideo = ideo,
burn.in = burn.in
)
#####
## Create links in the network according to homophily in terms of approximate model
#####
net <- ShapeNet(g = net,
seg = seg,
n.edg = n.edg)
# #####
# ## Record initial of outcomes
# #####
## Record convergence of the initial network
net$init.converg.util <- length(V(net)$approx[V(net)$approx == true.model])/length(V(net))
#####
## Set additional models parameter
#####
net$true.model <- true.model
net$burn.in <- burn.in
net$horizon <- horizon
net$n.seq <- n.seq
net
}