-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRotationDataset.py
159 lines (135 loc) · 5.69 KB
/
RotationDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os, time
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import datasets, transforms
from torchvision.utils import save_image
from utils import get_duration
from utils import read_image
from veri_wild import DatasetFetcher
class CustomLoader(Dataset):
def __init__(self):
super(CustomLoader, self).__init__()
self.images = torch.load('rotations/images.pt')
self.labels = torch.load('rotations/targets.pt')
def __len__(self):
return self.images.shape[0]
def __getitem__(self, idx):
return self.images[idx], self.labels[idx]
class RotationDataset(Dataset):
"""
Pytorch Dataset class that generates and encapsules the rotated data
in a pytorch dataset class
Should be followed by a dataloader
"""
def __init__(self, dataset=None, transform=transforms.ToTensor(),
make_rotations=False, rotations_root=None):
"""
*dataset: pytorch dataset object to construct rotations from
*transform: transform to be applied on dataloader of rotations
*make_rotations: flag, set to True if the class should create the rotations
sef to False if rotations are already created
*rotations_root: str, root to load (and save rotations)
"""
super(RotationDataset, self).__init__()
if rotations_root is None and not make_rotations:
raise InputError("cant have rotations_root not set and make_rotations=False")
self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
self.dataloader = torch.utils.data.DataLoader(dataset, batch_size=128, shuffle=False)
self.root = rotations_root
self.images_root = os.path.join(self.root, "images")
self.labels_root = os.path.join(self.root, "labels")
if make_rotations:
self.datalength = len(dataset)
self.generate_and_save_rotation()
self.images = self._get_imgs_from_dir(self.images_root)
self.transform = transform
self.labels = torch.load(os.path.join(self.labels_root, "labels.pt"))
def _get_imgs_from_dir(self, path):
print(f"Loading images from {path}")
img_names = os.listdir(path)
images = []
labels = []
if "_" in img_names[0]:
label_present_in_name = True
else:
label_present_in_name = False
for img in img_names:
if img.endswith(".png"):
img_name = img.split(".")[0]
if label_present_in_name:
img_name, label = img_name.split("_")
else:
label = "1"
images.append(int(img_name))
labels.append(int(label))
images, labels = (list(t) for t in zip(*sorted(zip(images, labels))))
if label_present_in_name:
sorted_images = [os.path.join(path, str(img)+"_"+str(label)+".png") for img, label in zip(images, labels)]
else:
sorted_images = [os.path.join(path, str(img)+".png") for img in images]
return sorted_images
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
img = self.images[idx]
img = read_image(img)
if self.transform is not None:
img = self.transform(img)
return img, self.labels[idx].item()
def rotate_tensor(self, tensor4D, angle):
assert angle in [0, 90, 180, 270]
if angle == 0:
rotated = tensor4D
elif angle == 90:
rotated = tensor4D.transpose(2,3).flip(3)
elif angle == 180:
rotated = tensor4D.flip(2,3)
elif angle == 270:
rotated = tensor4D.transpose(2,3).flip(2)
return rotated
def generate_and_save_rotation(self):
rotated_targets = torch.zeros(self.datalength).to(self.device)
rotations = [0, 90, 180, 270]
label_map = {
0:0,
90:1,
180:2,
270:3
}
if not os.path.isdir(self.root):
os.makedirs(self.root)
if not os.path.isdir(self.images_root):
os.mkdir(self.images_root)
if not os.path.isdir(self.labels_root):
os.mkdir(self.labels_root)
t0 = time.time()
idx = 0
img_idx = 0
t0 = time.time()
batch_idx = 0
for local_X, _ in iter(self.dataloader):
local_X.to(self.device)
angle = rotations[np.random.randint(0, 4)]
rotated_images = self.rotate_tensor(local_X, angle)
rotated_targets[idx:(idx+len(local_X))] = label_map[int(angle)]
idx += len(local_X)
for single_image in rotated_images:
img_path = os.path.join(self.images_root, str(img_idx)+ "_" + str(angle) + ".png")
save_image(single_image, img_path)
img_idx += 1
print(f"Batch {batch_idx}/{len(self.dataloader)} -- saved {img_idx} images so far -- time: {get_duration(t0, time.time())}")
batch_idx += 1
torch.save(rotated_targets.long(), os.path.join(self.labels_root, "labels.pt"))
print('done and saved')
if __name__=="__main__":
height, width = 96, 96
veri_transform = transforms.Compose([transforms.Resize((height, width)), transforms.ToTensor()])
dataset = None
make_rotations = False
rotations_root ="/data/nfs_Databases/jelhachem/veri_wild/images/rotations"
data = RotationDataset(dataset=dataset,
make_rotations=make_rotations,
rotations_root=rotations_root,
transform=veri_transform)
dataLoader = DataLoader(data, batch_size=8)