forked from Jasonkks/PTTR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_classes.py
258 lines (220 loc) · 9.51 KB
/
data_classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# nuScenes dev-kit.
# Code written by Oscar Beijbom, 2018.
# Licensed under the Creative Commons [see licence.txt]
#from __future__ import annotations
import torch
import numpy as np
from pyquaternion import Quaternion
class PointCloud:
def __init__(self, points):
"""
Class for manipulating and viewing point clouds.
:param points: <np.float: 4, n>. Input point cloud matrix.
"""
self.points = points
if self.points.shape[0] > 3:
self.points = self.points[0:3, :]
@staticmethod
def load_pcd_bin(file_name):
"""
Loads from binary format. Data is stored as (x, y, z, intensity, ring index).
:param file_name: <str>.
:return: <np.float: 4, n>. Point cloud matrix (x, y, z, intensity).
"""
scan = np.fromfile(file_name, dtype=np.float32)
points = scan.reshape((-1, 5))[:, :4]
return points.T
@classmethod
def from_file(cls, file_name):
"""
Instantiate from a .pcl, .pdc, .npy, or .bin file.
:param file_name: <str>. Path of the pointcloud file on disk.
:return: <PointCloud>.
"""
if file_name.endswith('.bin'):
points = cls.load_pcd_bin(file_name)
elif file_name.endswith('.npy'):
points = np.load(file_name)
else:
raise ValueError('Unsupported filetype {}'.format(file_name))
return cls(points)
def nbr_points(self):
"""
Returns the number of points.
:return: <int>. Number of points.
"""
return self.points.shape[1]
def subsample(self, ratio):
"""
Sub-samples the pointcloud.
:param ratio: <float>. Fraction to keep.
:return: <None>.
"""
selected_ind = np.random.choice(np.arange(0, self.nbr_points()),
size=int(self.nbr_points() * ratio))
self.points = self.points[:, selected_ind]
def remove_close(self, radius):
"""
Removes point too close within a certain radius from origin.
:param radius: <float>.
:return: <None>.
"""
x_filt = np.abs(self.points[0, :]) < radius
y_filt = np.abs(self.points[1, :]) < radius
not_close = np.logical_not(np.logical_and(x_filt, y_filt))
self.points = self.points[:, not_close]
def translate(self, x):
"""
Applies a translation to the point cloud.
:param x: <np.float: 3, 1>. Translation in x, y, z.
:return: <None>.
"""
for i in range(3):
self.points[i, :] = self.points[i, :] + x[i]
def rotate(self, rot_matrix):
"""
Applies a rotation.
:param rot_matrix: <np.float: 3, 3>. Rotation matrix.
:return: <None>.
"""
self.points[:3, :] = np.dot(rot_matrix, self.points[:3, :])
def transform(self, transf_matrix):
"""
Applies a homogeneous transform.
:param transf_matrix: <np.float: 4, 4>. Homogenous transformation matrix.
:return: <None>.
"""
self.points[:3, :] = transf_matrix.dot(
np.vstack((self.points[:3, :], np.ones(self.nbr_points()))))[:3, :]
def convertToPytorch(self):
"""
Helper from pytorch.
:return: Pytorch array of points.
"""
return torch.from_numpy(self.points)
@staticmethod
def fromPytorch(cls, pytorchTensor):
"""
Loads from binary format. Data is stored as (x, y, z, intensity, ring index).
:param pyttorchTensor: <Tensor>.
:return: <np.float: 4, n>. Point cloud matrix (x, y, z, intensity).
"""
points = pytorchTensor.numpy()
# points = points.reshape((-1, 5))[:, :4]
return cls(points)
def normalize(self, wlh):
normalizer = [wlh[1], wlh[0], wlh[2]]
self.points = self.points / np.atleast_2d(normalizer).T
class Box:
""" Simple data class representing a 3d box including, label, score and velocity. """
def __init__(self, center, size, orientation, label=np.nan, score=np.nan, velocity=(np.nan, np.nan, np.nan),
name=None):
"""
:param center: [<float>: 3]. Center of box given as x, y, z.
:param size: [<float>: 3]. Size of box in width, length, height.
:param orientation: <Quaternion>. Box orientation.
:param label: <int>. Integer label, optional.
:param score: <float>. Classification score, optional.
:param velocity: [<float>: 3]. Box velocity in x, y, z direction.
:param name: <str>. Box name, optional. Can be used e.g. for denote category name.
"""
assert not np.any(np.isnan(center))
assert not np.any(np.isnan(size))
assert len(center) == 3
assert len(size) == 3
# assert type(orientation) == Quaternion
self.center = np.array(center)
self.wlh = np.array(size)
self.orientation = orientation
self.label = int(label) if not np.isnan(label) else label
self.score = float(score) if not np.isnan(score) else score
self.velocity = np.array(velocity)
self.name = name
def __eq__(self, other):
center = np.allclose(self.center, other.center)
wlh = np.allclose(self.wlh, other.wlh)
orientation = np.allclose(self.orientation.elements, other.orientation.elements)
label = (self.label == other.label) or (np.isnan(self.label) and np.isnan(other.label))
score = (self.score == other.score) or (np.isnan(self.score) and np.isnan(other.score))
vel = (np.allclose(self.velocity, other.velocity) or
(np.all(np.isnan(self.velocity)) and np.all(np.isnan(other.velocity))))
return center and wlh and orientation and label and score and vel
def __repr__(self):
repr_str = 'label: {}, score: {:.2f}, xyz: [{:.2f}, {:.2f}, {:.2f}], wlh: [{:.2f}, {:.2f}, {:.2f}], ' \
'rot axis: [{:.2f}, {:.2f}, {:.2f}], ang(degrees): {:.2f}, ang(rad): {:.2f}, ' \
'vel: {:.2f}, {:.2f}, {:.2f}, name: {}'
return repr_str.format(self.label, self.score, self.center[0], self.center[1], self.center[2], self.wlh[0],
self.wlh[1], self.wlh[2], self.orientation.axis[0], self.orientation.axis[1],
self.orientation.axis[2], self.orientation.degrees, self.orientation.radians,
self.velocity[0], self.velocity[1], self.velocity[2], self.name)
def encode(self):
"""
Encodes the box instance to a JSON-friendly vector representation.
:return: [<float>: 16]. List of floats encoding the box.
"""
return self.center.tolist() + self.wlh.tolist() + self.orientation.elements.tolist() + [self.label] + [self.score] + self.velocity.tolist() + [self.name]
@classmethod
def decode(cls, data):
"""
Instantiates a Box instance from encoded vector representation.
:param data: [<float>: 16]. Output from encode.
:return: <Box>.
"""
return Box(data[0:3], data[3:6], Quaternion(data[6:10]), label=data[10], score=data[11], velocity=data[12:15],
name=data[15])
@property
def rotation_matrix(self):
"""
Return a rotation matrix.
:return: <np.float: (3, 3)>.
"""
return self.orientation.rotation_matrix
def translate(self, x):
"""
Applies a translation.
:param x: <np.float: 3, 1>. Translation in x, y, z direction.
:return: <None>.
"""
self.center += x
def rotate(self, quaternion):
"""
Rotates box.
:param quaternion: <Quaternion>. Rotation to apply.
:return: <None>.
"""
self.center = np.dot(quaternion.rotation_matrix, self.center)
self.orientation = quaternion * self.orientation
self.velocity = np.dot(quaternion.rotation_matrix, self.velocity)
def transform(self, transf_matrix, rtol=1e-6, atol=1e-6):
center = np.array([*self.center, 1])
transformed = transf_matrix @ center[None, ...].T
self.center = transformed.T[0, :3]
self.orientation = self.orientation* Quaternion(matrix = transf_matrix[0:3,0:3], rtol=rtol, atol=atol)
self.velocity = np.dot(transf_matrix[0:3,0:3], self.velocity)
def corners(self, wlh_factor=1.0):
"""
Returns the bounding box corners.
:param wlh_factor: <float>. Multiply w, l, h by a factor to inflate or deflate the box.
:return: <np.float: 3, 8>. First four corners are the ones facing forward.
The last four are the ones facing backwards.
"""
w, l, h = self.wlh * wlh_factor
# 3D bounding box corners. (Convention: x points forward, y to the left, z up.)
x_corners = l / 2 * np.array([1, 1, 1, 1, -1, -1, -1, -1])
y_corners = w / 2 * np.array([1, -1, -1, 1, 1, -1, -1, 1])
z_corners = h / 2 * np.array([1, 1, -1, -1, 1, 1, -1, -1])
corners = np.vstack((x_corners, y_corners, z_corners))
# Rotate
corners = np.dot(self.orientation.rotation_matrix, corners)
# Translate
x, y, z = self.center
corners[0, :] = corners[0, :] + x
corners[1, :] = corners[1, :] + y
corners[2, :] = corners[2, :] + z
return corners
def bottom_corners(self):
"""
Returns the four bottom corners.
:return: <np.float: 3, 4>. Bottom corners. First two face forward, last two face backwards.
"""
return self.corners()[:, [2, 3, 7, 6]]