forked from Jasonkks/PTTR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearchspace.py
187 lines (147 loc) · 5.91 KB
/
searchspace.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import numpy as np
from pomegranate import MultivariateGaussianDistribution, GeneralMixtureModel
import logging
class SearchSpace(object):
def reset(self):
raise NotImplementedError
def sample(self):
raise NotImplementedError
def addData(self, data, score):
return
class ExhaustiveSearch(SearchSpace):
def __init__(self,
search_space=[[-3.0, 3.0], [-3.0, 3.0], [-10.0, 10.0]],
search_dims=[7, 7, 3]):
x_space = np.linspace(
search_space[0][0], search_space[0][1],
search_dims[0])
y_space = np.linspace(
search_space[1][0], search_space[1][1],
search_dims[1])
a_space = np.linspace(
search_space[2][0], search_space[2][1],
search_dims[2])
X, Y, A = np.meshgrid(x_space, y_space, a_space) # create mesh grid
self.search_grid = np.array([X.flatten(), Y.flatten(), A.flatten()]).T
self.reset()
def reset(self):
return
def sample(self, n=0):
return self.search_grid
class ParticleFiltering(SearchSpace):
def __init__(self, bnd=[1, 1, 10]):
self.bnd = bnd
self.reset()
def sample(self, n=10):
samples = []
for i in range(n):
if len(self.data) > 0:
i_mean = np.random.choice(
list(range(len(self.data))),
p=self.score / np.linalg.norm(self.score, ord=1))
sample = np.random.multivariate_normal(
mean=self.data[i_mean], cov=np.diag(np.array(self.bnd)))
else:
sample = np.random.multivariate_normal(
mean=np.zeros(len(self.bnd)),
cov=np.diag(np.array(self.bnd) * 3))
samples.append(sample)
return np.array(samples)
def addData(self, data, score):
score = score.clip(min=1e-5) # prevent sum=0 in case of bad scores
self.data = data
self.score = score
def reset(self):
if len(self.bnd) == 2:
self.data = np.array([[], []]).T
else:
self.data = np.array([[], [], []]).T
self.score = np.ones(np.shape(self.data)[0])
self.score = self.score / np.linalg.norm(self.score, ord=1)
class KalmanFiltering(SearchSpace):
def __init__(self, bnd=[1, 1, 10]):
self.bnd = bnd
self.reset()
def sample(self, n=10):
return np.random.multivariate_normal(self.mean, self.cov, size=n)
def addData(self, data, score):
score = score.clip(min=1e-5) # prevent sum=0 in case of bad scores
self.data = np.concatenate((self.data, data))
self.score = np.concatenate((self.score, score))
self.mean = np.average(self.data, weights=self.score, axis=0)
self.cov = np.cov(self.data.T, ddof=0, aweights=self.score)
def reset(self):
self.mean = np.zeros(len(self.bnd))
self.cov = np.diag(self.bnd)
if len(self.bnd) == 2:
self.data = np.array([[], []]).T
else:
self.data = np.array([[], [], []]).T
self.score = np.array([])
class GaussianMixtureModel(SearchSpace):
def __init__(self, n_comp=5, dim=3):
self.dim = dim
self.reset(n_comp)
def sample(self, n=10):
try:
X1 = np.stack(self.model.sample(int(np.round(0.8 * n))))
if self.dim == 2:
mean = np.mean(X1, axis=0)
std = np.diag([1.0, 1.0])
gmm = MultivariateGaussianDistribution(mean, std)
X2 = np.stack(gmm.sample(int(np.round(0.1 * n))))
mean = np.mean(X1, axis=0)
std = np.diag([1e-3, 1e-3])
gmm = MultivariateGaussianDistribution(mean, std)
X3 = np.stack(gmm.sample(int(np.round(0.1 * n))))
else:
mean = np.mean(X1, axis=0)
std = np.diag([1.0, 1.0, 1e-3])
gmm = MultivariateGaussianDistribution(mean, std)
X2 = np.stack(gmm.sample(int(np.round(0.1 * n))))
mean = np.mean(X1, axis=0)
std = np.diag([1e-3, 1e-3, 10.0])
gmm = MultivariateGaussianDistribution(mean, std)
X3 = np.stack(gmm.sample(int(np.round(0.1 * n))))
X = np.concatenate((X1, X2, X3))
except ValueError:
print("exception caught on sampling")
if self.dim == 2:
mean = np.zeros(self.dim)
std = np.diag([1.0, 1.0])
gmm = MultivariateGaussianDistribution(mean, std)
X = gmm.sample(int(n))
else:
mean = np.zeros(self.dim)
std = np.diag([1.0, 1.0, 5.0])
gmm = MultivariateGaussianDistribution(mean, std)
X = gmm.sample(int(n))
return X
def addData(self, data, score):
score = score.clip(min=1e-5)
self.data = data
self.score = score
score_normed = self.score / np.linalg.norm(self.score, ord=1)
try:
model = GeneralMixtureModel.from_samples(
MultivariateGaussianDistribution,
n_components=self.n_comp,
X=self.data,
weights=score_normed)
self.model = model
except:
logging.info("catched an exception")
def reset(self, n_comp=5):
self.n_comp = n_comp
if self.dim == 2:
self.data = np.array([[], []]).T
else:
self.data = np.array([[], [], []]).T
self.score = np.ones(np.shape(self.data)[0])
self.score = self.score / np.linalg.norm(self.score, ord=1)
if self.dim == 2:
self.model = MultivariateGaussianDistribution(
np.zeros(self.dim), np.diag([1.0, 1.0]))
else:
self.model = MultivariateGaussianDistribution(
np.zeros(self.dim), np.diag([1.0, 1.0, 5.0]))